
Optimizing fee estimation via 
the mempool state
Karl-Johan Alm @kallewoof ・ karl@dglab.com



Some history















Current fee estimation method



As of Bitcoin Core 0.15, fee estimation has been upgraded.

● Two modes: conservative and economic.
● For t block target, find a fee rate based on the most recently 

mined blocks, with the following success rates:
○ 60% at half of t (e.g. 3 for t=6), and
○ 85% at t, and
○ (conservative mode only) 95% at 2t.

Bitcoin Core



Bitcoin Core

The new fee estimator is much better at reacting to large 
volatility in tx throughput, but ignores the mempool.



Mempool optimization



Mempool optimization

We can use the mempool to react faster to sudden changes in the 
mempool:

● We can optimize (decrease) the fee to a given point in the next 
imagined block, say the 5% point.

● Precision depends on time until next block is mined and other 
factors.

● We can safely under-estimate and later RBF-bump.



We can do the opposite as well…

● We can assume that we must wait at least
Σ(mempool weight above our fee rate) / 4,000,000
blocks before our transaction is mined at the given fee rate.

● If this is higher than our target, we may want to use a higher 
fee rate.

● This can be gamed, and is not considered further.

Mempool optimization



Results (overestimations by mode)







Underestimation rates



Underestimations after 1 block (t=1)



Underestimations after 2 blocks (t=1)



Underestimations after 3 blocks (t=1)



Underestimations after 4 blocks (t=1)



Underestimations after 5 blocks (t=1)



Underestimations after 10 blocks (t=1)



RBF-bumping



● Around since Bitcoin Core 0.12
● Easier to use with 0.14: bumpfee command
● Method:

○ broadcast a transaction which is marked RBF (default off)
○ bump its fee by creating a new transaction which spends 

the same inputs, but has a higher fee rate (outputs can 
change)

Replace-By-Fee (RBF)



Estimating fee delta with optimization

A transaction can be bumped at any time by looking at the 
mempool and calculating the minimum fee rate to get into the 
next t blocks:

● Excess = Σ(weight of mempool tx above our fee rate) - 
4,000,000t.

● If < 0, we are good.
● If > 0, we have to wait longer than t.



Estimating fee delta with optimization

● The exact fee we need:
○ order txs by descending fee rate
○ grab fee rate of tx at 4,000,000t - α
○ Want: fee rate slightly over above, if < some threshold

● We can "tune" our transaction repeatedly while waiting for 
the next block(s), until it's time to be mined (t=1) or we hit our 
threshold and need to wait longer.



Estimating fee delta with optimization

Benefits, assuming threshold = the block-only estimator result (or 
slightly above it):

● 100% safe (never gives insane fees unless Bitcoin Core does so 
itself, due to threshold)

● more precise, and will tell the user exactly when the 
transaction is expected to be mined (with some error…)

● cheaper (up to 80% in cases where mempool drops rapidly)



Thank you

Karl-Johan Alm <karl@dglab.com>
@kallewoof on Github, Twitter, etc.

mailto:karl@dglab.com

