Bitcoin Script 2.0 and
Strengthened Payment Channels

Johnson Lau, Bitcoin protocol developer
Olaoluwa Osuntokun, Co-founder Lightning Labs

Presented at Scaling Bitcoin 201/
Stanford, CA
November 4th 2017

A brief history of Bitcoin script evolution

Emergency bug fix (2009-2010)

e Skip signature check with OP_RETURN and malformed scriptSig

e Accidental consensus fork: OP_VER and OP_VERIF

e Potential DoS: CAT, SUBSTR, LEFT, RIGHT, INVERT, AND, OR, XOR, 2MUL,
2DIV, MUL, DIV, MOD, LSHIFT, RSHIFT

Fixed-size address for arbitrarily complex scripts (2012)

e Pay-to-script » Pay-to-hash-of-script
e BIP16 Pay-to-script-hash

A brief history of Bitcoin script evolution

Strict DER signature format (BIP66, 2015)
e Consensus bug due to inconsistencies in signature handling in OpenSSL
Lock-time and Relative Lock-time (2015-2016)

e OP_CHECKLOCKTIMEVERIFY (BIP65)
e OP_CHECKSEQUENCEVERIFY (BIP112)
e Priority resolution in smart contracts

Malleability fix (2016-2017)

e BIP141. Segregated witness

Shortcomings - Lack of upgrade mechanism

e Oiriginal solutions including OP_VER, OP_VERIF and OP_RETURN led to
critical consensus failure and were disabled

e OP_NOP1to OP_NOP10 allowed new “pass-or-fail” type operations, but not
any stack-manipulating operations (push, move, remove)

e Not possible to redefine existing operations

e “Witness version” in Segregated Witness (BIP141) allows introduction of new
script system without modifying existing script functions

Shortcomings - Lack of string and bitwise operations

e Most string and bitwise operations were disabled in a rush in 2010:
o OP_CAT, OP_SUBSTR, OP_LEFT, OP_RIGHT, OP_INVERT, OP_AND,
OP_OR, OP_XOR
e Unable to combine strings or examine part of a string
e Potential use:
o Tree signatures with OP_CAT: O(logN) script size for very complicated multi-sig
o Deterministic random number generation with OP_XOR: combining secret values from different

parties
o Weak hash with OP_LEFT: to save witness space when 160-bit is not necessary

e Safely re-enabled in the Elements Project

Shortcomings - Limited numeric operations

Disabled in 2010: OP_MUL, OP_2MUL, OP_DIV, OP_2DIV, OP_MOD,
OP_RSHIFT, OP_LSHIFT

Range of value is limited and confused
o CScriptNum are processed as int64 internally
o Input: Up to 32-bit sighed
o Output: Potentially up to 64-bit signed
Input size cannot cover the maximum amount of bitcoin supply
o 21,000,000 * 108 = 250899
o Needs at least 51-bit unsigned or 52-bit signed
Proposal
o Expand the valid input range to 56-bit signed (7-byte)
o Limit the maximum output size to /7-byte
o Safely re-enable operations within the limited input and output range

Shortcomings - Cannot commit to additional scripts

e Functional (non-push) script operations in scriptSig has no practical use
o Malleable by third parties, as not covered by the signature operations in scriptPubKey
o For example, any <sig> <pubkey> OP_CHECKSIG pattern in scriptSig could be simply replaced
by a OP_10r OP_O
e Potential use:
o Delegation: inclusion of additional scripts without spending and re-creating UTXO. For example
“my son may spend this UTXO later, if it is not spent by me within 1 year”
o Replay protection: with OP_PUSHBLOCKHASH (push the hash of a block of specified height to
stack), it makes sure a transaction is valid only in a specified blockchain fork

e Proposal: OP_CHECKSIG needs the ability to sign additional scripts which wiill
be executed

Shortcomings - Limited access to tx components

e OP_CHECK(MULTISIG(VERIFY) are the only operations that could examine
different components in a transaction, in 6 very restricted SIGHASH

combinations:
o (SIGHASH_ALL or SIGHASH_SINGLE or SIGHASH_NONE) + SIGHASH_ANYONECANPAY

e Advantage of SIGHASH design

o Very compact: 1-byte to indicate which components to sign

e Disadvantage of SIGHASH design

o Very inflexible: meaning of SIGHASH flags are set in stone once deployed
o Complicated and error-prone design, e.g. O(N?) bug and SIGHASH_SINGLE bug

e Proposal: SIGHASHV2 with O to 2 bytes, covering transaction nVersion,
nLockTime, inputs (value, hash, nSequence), outputs (script, value), fees,
additional scripts. All components are individually optional.

Shortcomings - Limited access to tx components

e Another proposal: OP_PUSHTXDATA - push the value of different components
of a transaction to the stack
e Advantage over SIGHASH

o Easier to implement and review

o More than “equal to”, e.g. “value of output X must be at least Y BTC”, “version must not be Z”
(with 7-byte numeric comparison)

o Combination of different components, e.g. “fees must be at least X satoshi per weight unit” (with
OP_MUL or OP_DIV)

o Very flexible, e.g. “sign only inputs 1, 3, 5 and outputs 2, 4, 6 and ignore the rest”

o Covenant: predefining the output script, e.g. “to spend this UTXO, script of the output X must be
in some restricted form and the value must be at least Y.” (with OP_CAT or OP_SUBSTR)

e Disadvantage over SIGHASH

o Use more witness space

o Money may be lost with poorly designed covenant (true for any poorly designed smart contracts)
m Anyone-can-spend
m No-one-can-spend
m Locking money in an endless loop

Other useful new functions

Merkalized Abstract Syntax Tree (MAST)

Expose only executed branch, and keep the rest hidden as hash
O(logN) space efficiency instead of O(N)

Allow very big scripts with many branches that are not possible today
Better privacy as unused scripts are hidden

Public Key Aggregation
e n-of-n multi-sig becomes single-sig
® Increased privacy, less space

Other useful new functions

OP_CHECKSIGFROMSTACK (OP_CSFS)

e 3 arguments: public key, 32-byte message, signature
e Implemented in the Elements Project
e Potential use:

o New commitment invalidation scheme

o Signature for another Bitcoin UTXO

o Signature for non-Bitcoin message, e.g. cross-chain swap

OP_ECADD, OP_ECMUL

e Performing elliptic curve point addition and multiplication
e Potential use:

o More private replacement for HTLCs

Related Work-in-progress
Johnson Lau: Merkalized scri pt (B IP114 and more https://listsAIinuxfoundationAorg/pipermaiI/bitcoin-dev/2O‘I7-September/014963html)

Mark Friedenbach: Merkle branch verification & tail-call execution semantics

(https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-September/014932.html)

I_ U ke Da S hJ r Ve rS | O n '1 Wltn eSS p I’Og I’a m (https://lists.Iinuxfoundation.org/pipermail/bitcoin—dev/2O17—October/015141AhtmI)
R U Ssel | O ' CO n n O r S' m p I |C|ty (https://lists.linuxfoundation.org/pipermaiI/bitcoin—dev/2017—October/O15217.html)
Questions related to script design philosophy

Static analyzability of script

Turing completeness and recursion
Limiting validation resources (sigop)
Best way for further upgradability

Case Study: Re-Designing Payment Channels

e W/ new Script extensions, can improve channels over multiple dimensions:
o Reduce amount of client side storage:
m Historical chan state:C + 0(log k) 2 0 (1)
e C =set of keys for script template
e K= height of revocation tree
m HTLC storage for latest chan state: O (N) 2 0 (1)
e N =num active HTLCs (need sig for each)
o Reduce amount of WatchTower Storage:
m OM)+ O(N)+ O(log k) 2 O(1)
¢ M=numHTLC’s ever, N = num states
o Allow for trap door anyone-can-revoke outputs:
m Special clause in WatchTower contract to ensure inevitable enforcement
o Channel open + cooperative close indistinguishable from regular payments
m (can actually be done today)
o Indistinguishable payment identifiers for multi-hop payments

Review of Commitment Invalidation

e Critical safety mechanism of BDP (BiDi Payment Channels):
o We ensure both parties are incentivized to only broadcast the latest state
o Otherwise, their entire balance within channel is slashed!

e History of prior commitment invalidation mechanisms:

o Decrementing sequence locks (utilizes BIP 68)
m How: use relative time-locks s.t latest state can go in before prior states
m Drawback: limits number of possible updates

o Commitment invalidation tree (used in Duplex Payment Channels (cdecker))
m How: structure commitments in tree s.t parent must be broadcast before leaf

e Roots have decrementing time lock w/“kick-off” allows for indefinite lifetime

m Drawback: at cost of increased on-chain foot print

o Commitment Revocations (hash or key based, current channel design)
m How: must reveal secret of prior state when accepting new state
m Drawback: MUST critically store O(log N) of remote party, more complex key derivation

What if | told you....we don’t need revocations!

e Enter OP_CHECKSIGFROMSTACK

o Review: allows checking signatures on arbitrary messages
o Use: contracts can enforce structure on signed messages
e |nvalidation via signed sequence commitments
o Invalidation clause is now:
m Present: (sig, n, r), s.t verify(sig, key, c) && open(c) == (n’, r) && n’>n
m “l know of an opening to a signed commitment (by broadcaster) of a newer seqno”
o Risrandom value to ensure commitments are hiding
m Avoids revealing # of updates in case of unilateral broadcast
m Re-use sequence+tiocktime obfuscation mask (BOLT #3)
e Maintains same channel commitment state machine (BOLT #2)
o Simplifies key derivation in current channels

e Reduces storage for both parties to O(1) (sig + commitment opening)
o Has implications for the WatchTower

Review of WatchTower State Outsourcing

e LN assumes decentralized mining, on-chain liveness
o On-chain censorship major issue
o CSV value T acts as time-based security parameter
m Configurable on a channel to channel basis

e If unable to be eternally vigilant, can outsource to WatchTower
o Under current design:
m For commitments:
e Send initial base points (needed to construct witness script template)
e For each state send a new signature for justice transaction
m ForHTLCs
e Encrypt opaque blob with txid[:16]
o Various compensation/authentication mechanisms possible
m ZKP’s for authentication
m Pay-per-state, only provide bonus upon action, subscription, etc

Delegated Trapdoor Channel Outsourcing

e Using commitment seqno based revocation:
o Due to seqno invalidation requirements only latest commitment required!
m Each new sign commitment segno replaces a lower segno
m Able to skip sending states as no strict ordering requirement

e Delegated Outsourcing:

o With above still need to send sig for each state
m Invalidation achieved, but need to bind to a pukey to ensure security

o Solution:
m Using covenants and OP_CHECKSIGFROMSTACK we’ll “bless” a pubkey
m Blessed pubkeys can present final signature to satisfy invalidation
m Use covenants to restrict structure of spending transaction

e Use to require they take a % as fee, pay to my key, etc, etc

m Can use MAST to bless a set of pubkeys

e Free for all trapdoor: given public segno commitment, let anyone spend after
delay

Eliminate Historical Second-Level HTLC Storage

e In current commitment design (BOLT#3) CSV+CLTV decoupled in HTLC’s:

o Priorissue where if CSV is large, CLTV in total hop must be >>
o Solved by making HTLC claiming a 2-stage state machine
m Off-chain multi-sig covenants
m Attest (broadcast) -> Delay (csv) -> Claim (sweep)
o Cons:
m Requires distinct transaction for each HTLC
m Must store signature for each HTLC
m New state updates require signing+verifying N sigs (for each HTLC)
® (post-schnorr can be batched tho)

e Solution:
o Use actual covenants in HTLC outputs!
Eliminates sig+verify w/ commitment creation
Eliminates sig storage of current state
Add independant script for HTLC revocation clause (reuse commitment invalidation technique!)

o O O

Modifications for Increased Privacy

e Channels currently identifiable on-chain:
o 2-of-2 multi-sig outputs stick out amongst other traffic
o Candidate for miners to censor, outlawing contracts (censorshipResistance--)
e Multi-Sig -> Single-Sig (via multi-signatures):
o Disguise channel openings are regular transactions
o Use 2-party signing to generate signature for joint public key:
m ECDSA: https://eprint.iacr.org/2017/552.pdf
e Uses paillier, zero knowledge proofs of correctness
m Schnorr: https://cseweb.ucsd.edu/mihir/papers/multisignatures-ccs.pdf
e Multi-signatures w/ built-in de-linearization
e Replace HTLC’s using EC operations (like Sphinx’s one little-trick):
o Sphinx payload =(Q, P, r) st (Q=P+r*G)
m Send P on outgoing HTLC
m Onsettle, learnp, calc:.qg=p +71)
m Use gto settle incoming HTLC

https://eprint.iacr.org/2017/552.pdf
https://cseweb.ucsd.edu/~mihir/papers/multisignatures-ccs.pdf

