Scaling Bitcoin to Support Privacy-Preserving Smart Contracts

Ranjit Kumaresan (MIT)

ranjit@csail.mit.edu

people.csail.mit.edu/ranjit/

Goal of this Talk

- Smart contracts Scaling
 - Expressivity & Limitations
 - Efficiency
 - Privacy
 - Remove limitations via a natural relaxation
- Highlight: Off-chain crypto for scaling
 - Magic tech: **Secure Computation**
 - Active research pushing this to practice
 - Integration with Bitcoin backed by academic research
 - Presents new perspectives on scaling issues
 - Encourage more research/engineering/hacking

Smart Contracts

Contracts

- Well-defined set of rules among group of agents
- Rules agreed upon if deemed fair by all agents
- E.g.: Nuptial agreements, Tax treaties, *Bitcoin*
- Enforcing contracts
 - Typically by some authority (e.g., legal)
 - Typically involves data and/or money
- Smart contracts via decentralized digital currencies
 - Eliminates authority (and associated costs)
 - Automatic enforcement via consensus

Smart Contracts - Expressivity

- Via scripts
- Support multi-sigs, etc.
- Restrict some OP_CODES

Via scriptsTuring-complete!

Later: Both possibly face fundamental limitations

Smart Contracts - Efficiency

- Script verification fast because of restrictions
- Block size restriction does not support scaling wrt number of agents or wrt complexity of contract

- Turing-complete scripts too powerful
- Miners may lose the incentive to verify transactions containing complex scripts

Later: More efficiency metrics for smart contracts

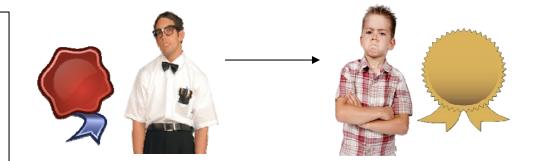
Smart Contracts - Privacy

- Emphasis on consensus
- No native support

- No native support
- No privacy logic


Later: Off-chain crypto for privacy & more!

Smart Contracts - Limitations


FAIR EXCHANGE

Parties want to exchange digital assets

Abort Attacks

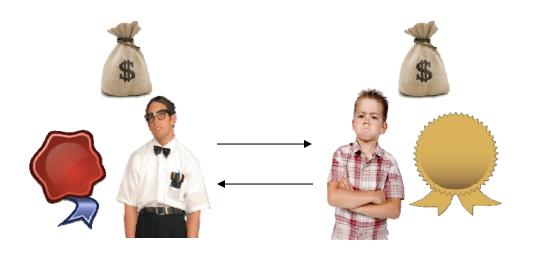
Need to force exchange to happen simultaneously

Fair *currency* exchange

- Use TierNolan protocol
- Generally, easy if asset has supporting blockchain

Arbitrary assets

- Don't know!
- Impossible?



Smart Contracts - Relaxations

FAIR EXCHANGE WITH PENALTIES

Parties want to exchange digital assets;

Upon abort, penalty imposed on cheater

Possible?

- Yes! Even for arbitrary assets [Bentov-Kumaresan'14]
- Protocol uses scripts supported in Bitcoin
 - Scaling issue: Scales poorly in the multi-party setting

Smart Contracts with Penalties

- Add extra *penalty* rule in contract
 - Cheating agent pays a penalty to all other agents
- Natural relaxation for contracts
 - Contracts implicitly associated with penalty for "breaking the contract" (e.g.: penalty decided in a court of law)
 - Here: Explicit penalty by associating monetary value
- Allows overcoming fundamental limitations
 - Backed by academic research [ADMM14,BK14,KB14,KBM15]

Example App: Decentralized Poker

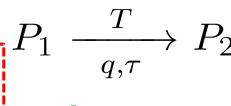
- The *POKER* "smart contract with penalties"
 - Agents = Players
 - Rules = Poker rules
 - Action steps:
 - Data = Cards
 - Transactions = Bets

- Player may abort in the middle if it's unlikely to win
 - If player aborts during its action step, then it pays penalty to all other players

Scaling Issues

- Scaling parameters:
 - Number of agents
 - Size of rules
 - Size of data
 - Privacy
 - Contract data typically sensitive
 - Not a good idea to add contract data to the blockchain
- Solution ideas:
 - Try to build complex contracts from simpler contracts
 - Use off-chain crypto technology to support scaling

Block size limit has direct relevance



Simple Contracts: Claim-or-refund

- Claim-or-refund
 - Zero-knowledge Contingent Payment (BTC wiki 2011)
 - 2-party contracts between sender and receiver
 - Sender locks coins in the transaction and specifies criteria
 - Receiver can claim coins within time t by producing data D that satisfies criteria
 - If unclaimed by time t, coins refunded to sender
- Blockchain independent abstraction
- Can build complex contracts from claim-or-refund!!
 - Example: Multiparty Fair Exchange with Penalties

Multi-Party Fair Exchange with Penalties

denotes

 P_2 must reveal data T within time τ to claim coins(q) from P_1

$$P_{1} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n}} P_{n}$$

$$P_{2} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n}} P_{n}$$

$$\vdots$$

$$P_{n-2} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n}} P_{n}$$

$$P_{n} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n}} P_{n}$$

$$P_{n-1} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n}} P_{n}$$

Issues

- No data privacy!
- Transactions are 2-party but size grows with *n*; size also depends on data

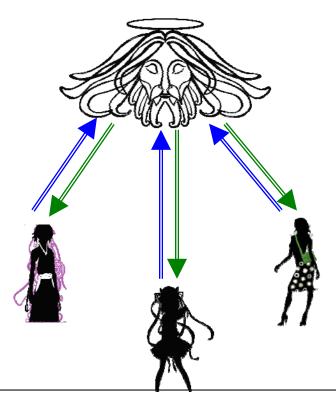
$$P_{n} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n-1}} P_{n-1}$$

$$P_{n-1} \xrightarrow{T_{1} \wedge \cdots \wedge T_{n-2}} P_{n-2}$$

$$\vdots$$

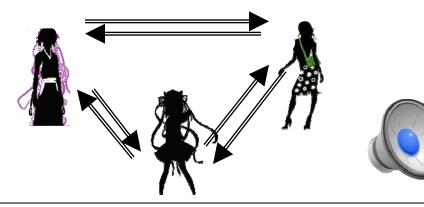
$$P_{3} \xrightarrow{T_{1} \wedge T_{2}} P_{2}$$

$$P_{2} \xrightarrow{T_{1}} P_{2}$$


$$P_{3} \xrightarrow{T_{1} \wedge T_{2}} P_{2}$$

$$P_{3} \xrightarrow{T_{1} \wedge T_{2}} P_{2}$$

Magic Technology: Secure Computation


IDEAL

- Parties submit data
- Parties get back results

IDEAL → **REAL**

- No trusted party!
- Run secure computation protocol!
 - GOD → CRYPTO
- Same effect as the IDEAL protocol
 - Privacy/Correctness
- Active area of research
 - Moving from theory to practice!

SNARK, NIZK, FHE, Obfuscation, etc., are special cases of secure computation and impose restrictions on interaction (and are less efficient)

Powerful Combination: Claim-or-refund + Secure Computation

Scaling parameter	Stateless Contracts (Example: Fair exchange)
Number of agents	Decoupled from block size restriction
Size of rules	No on-chain dependence
Size of data	No on-chain dependence
Privacy	Yes

- Get nontrivial feasibility result for *stateful* smart contracts
 - Privacy Preserving
- Caveat: Assumes extended script support for Bitcoin
 - Example: For **POKER** smart contract with penalties
 - Need verification of signatures on arbitrary (but bounded data)....
 Don't need Turing-complete scripts
- Another caveat: large number of ordered transactions
 - Use off-chain payment channel like *Lightning*

Academic Work on Bitcoin + Sec.Comp.

- A Note on Coin Tossing
 - Back-Bentov (arXiv 2014)
- Secure Multiparty Computations on Bitcoin
 - Andrychowicz et al. (IEEE S&P 2014 best paper)
- How to Use Bitcoin to Design Fair Protocols
 - Bentov-Kumaresan (IACR Crypto 2014)
- How to Use Bitcoin to Incentivize Correct Computations
 - Kumaresan-Bentov (ACM CCS 2014)
- How to Use Bitcoin to Play Decentralized Poker
 - -Kumaresan-Moran-Bentov (ACM CCS 2015)
- Hawk: The Blockchain Model of Cryptography & Privacy Preserving Smart Contracts
 - -Kosba et al. (ePrint 2015)

Summary

- Smart contracts with penalties
 - Removes limitations on expressivity
- Highlight: Off-chain crypto for scaling
 - Magic tech: Secure Computation
 - Active research pushing this to practice
 - Integration with Bitcoin backed by academic research
 - New perspectives on scaling: *Extended script support*
 - Need more research/engineering/hacking

Thank You!

ranjit@csail.mit.edu

people.csail.mit.edu/ranjit/