
Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi,
Alessandra Scafuro, Sharon Goldberg

Scaling Bitcoin Milan 2016 1

TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous

Payment Hub

Introduction

TumbleBit can be used as a classic Bitcoin tumbler:
● k-anonymity within a mix,
● 4 transactions confirmed in 2 blocks (~20mins)

TumbleBit is:
1. Private: Unlinkable Bitcoin payments and k-anonymous mixing,
2. Untrusted: No one including Tumbler can steal or link payments.
3. Scalable (payment hub): scales transaction velocity and volume.
4. Compatible: Works with today's Bitcoin protocol.

When TumbleBit is used as a payment hub:
● Unlinkability within the payment phase,
● Payments confirmed in seconds,
● Payments are off-blockchain,

... don’t take up space on the blockchain. 2

Two ways to use TumbleBit:

Why is compatibility hard?
Our protocol must work with highly constrained Bitcoin scripts
which provide two very limited cryptographic operations.

When used as a payment hub, TumbleBit helps scale
Bitcoin’s transaction velocity (faster payments),

and transaction volume (higher maximum payments).

Transaction: Escrow2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub

3

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

A payment hub: routes payment channels.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

Transaction
Claim2

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2

σ
1

Alice signs Claim1 Payment Hub signs Claim2

σ
1

σ
2

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

HTLCs: Claim

X

Hash locks provide this property.

Transaction: Escrow2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub

4

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

A payment hub: routes payment channels.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

H(x) = Y?

Transaction
Claim2

H(X) = Y?

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2σ

1

Alice signs Claim1 Payment Hub signs Claim2

σ
1

,x σ
2
 ,x

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

Hash locks provide this property.

I don’t know x, so…
I can’t spend Claim2.

Alice, learn x to pay me.Bob, the value of x is....

Thus, using hash locked transactions or HTLCs a payment hub can prevent theft,
however this is provides no privacy against the payment hub.

Background: No Privacy

5

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

Payers

Alice
1

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Claim

H(x1) = Y?

Transaction
Claim

H(x2) = Y?

Transaction
Claim

H(x2) = Y?

Transaction
Claim

H(x3) = Y?

Transaction
Claim

H(x3) = Y?

Transaction
Claim

H(x1) = Y?

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

The main idea behind TumbleBit is a protocol which
provides atomicity but is also unlinkable (i.e. private).

Think of it like Unlinkable or Private HTLCs.

No privacy
from payment hub.

?????

?????

?????

 RSA Puzzles
● An RSA Puzzle is just a “textbook RSA encryption” of some value ϵ:

 RSA(PK, ϵ) = z

● Only the party that knows SK can solve RSA puzzles:
 RSA-1(SK, z) = RSA-1(SK, RSA(PK, ϵ)) = ϵ

2. Bob2 blinds his puzzle
and requests a solution.

z2

RSA blinding can be used to blind RSA puzzles

1. Tumbler issues two puzzles.

3. Tumbler solves
the blinded puzzle
and generates a
blinded solution ϵ*.

ϵ*

z*

4. Bob2 finds the solution
to z2 by unblinding ϵ*.

ϵ2 = Unblind(ϵ*)

Tumbler can not link the blinded RSA puzzle it solves z*
to any of the RSA puzzles it issued (z1, z2).

Tumbler

Bob
1

Bob
2

z1

z2

z* = Blind(z2)
RSA-1(SK,z*) = ϵ*

Bob2 learns the solution ϵ2 to the puzzle z2

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Puzzle Promise

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Transaction

σ for .

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

TumbleBit prevents this via two protocols:
Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to RSA
puzzle z is a value ϵ which allows him learn σ.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

 If Tumbler corrupts z, c, X,or q it can cheat Alice or Bob!

Alice
1

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTC

Close channel
T:8, B1:2

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

TumbleBit: Phases

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

+1 BTC to Tumbler

σ

Payment Channel
T:10, B1:0

Payment Channel
T:10, B2:0

Payment Channel
T:10, B3:0

Payment Channel
A1:10, T:0

Payment Channel
A2:10, T:0

Payment Channel
A3:10, T:0

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...(c,z)

Close channel
T:0, B2:10

Close channel
T:7, B3:3

Close channel
T:5, B1:5

Close channel
T:3, B2:7

Close channel
T:7, B3:3

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTCPay 6 BTCPay 7 BTC

Pay 1 BTCPay 2 BTCPay 3 BTC

σ

σσ

σ

σ σ

σ σ σ

 Privacy offered the TumbleBit Payment Hub

Tumbler’s view:
(1) payer of each payment, (2) # of payments each payee received.

Unlinkability def:
All interaction graphs compatible with the tumblers view are equally likely.

(7)

(3)

(5) (2)

(10)

(3)

Sent # Received

TumbleBit: Classic Tumbler

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

+1 BTC to Tumbler

σ

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

Alice
1

Pay 1 BTC
Close channel

T:0, B1:1

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

Payment Channel
T:1, B1:0

Payment Channel
T:1, B2:0

Payment Channel
T:1, B3:0

Payment Channel
A1:1, T:0

Payment Channel
A2:1, T:0

Payment Channel
A3:1, T:0

Close channel
T:0, B2:1

Close channel
T:0, B3:1

Close channel
T:1, B1:0

Close channel
T:0, B2:1

Close channel
T:1, B3:0

Pay 1 BTC

Pay 1 BTC

To run TumbleBit as a Classic Bitcoin Tumbler:
● Each payer just makes one payment.
● Each payee accepts only one payment.
● # of payers = # of payees.

Provides k-anonymity:
Where k = # of payers = # of payee.

TumbleBit: Implementation

10

We wrote a proof-of-concept implementation of the Tumbler mode:
● We are working on improving it and making it user friendly.
● Sourcecode and a development roadmap are available on

Github.
● We are working to improve it to make it user ready.

We “tumbled” 800 payments:
 You can see the transactions on the mainnet blockchain.

TXIDs avaliable in our paper.

Our implementation is Performant (per TumbleBit payment):
● 326 KB of Bandwidth,
● Puzzle-Solver takes ~0.4 seconds to compute
● Total time depends on network latency:

No latency ~0.6 seconds.
Boston to Tokyo ~6 seconds(clear) and ~11 seconds(both
parties user TOR)

Related Work
Bitcoin-Compatible

Schemes
(aka “Mixing Services”)

Vulnerable to bitcoin theft

Intermediary
breaks

anonymity

Mixing takes
hours

11

Xim

Vulnerable to DoS & Sybil Attacks

Limited Anonymity

New Cryptocurrencies
Not compatible with bitcoin

TumbleBit

Conclusion

12

● TumbleBit is works with today’s Bitcoin:
○ We have run TumbleBit on Bitcoin’s Blockchain (mainnet).

TumbleBit provides private scalable trustless payments
via Bitcoin.
.

1.

TumbleBit provides:
 private untrusted scalable payments via today’s Bitcoin:

1. Private: Unlinkable or k-anonymous payments
2. Trustless: Tumbler can not steal or link payments.
3. Scalable (payment hub): scales Bitcoin’s transaction velocity and volume.

We have running code (for TumbleBit classic tumbler):

● Our code runs on Bitcoin’s mainnet blockchain.
● We have published our code on github..
● ...and we working to improve it and make TumbleBit easy and safe to use.

We are hiring a full time engineer (Boston),
email me if interested.

Questions?

13
Ask questions on twitter: @Ethan_Heilman

Source code + roadmap: https://github.com/BUSEC/TumbleBit

Paper: https://eprint.iacr.org/2016/575.pdf

TumbleBit: Puzzle-Solver-Protocol

14

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6)

1. A blinds:

6. Bob and Tumbler run “quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (qi,ϵi,Yi) of the real puzzles correctly Alice learns ϵ*,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

Fair exchange/contingent payment for an RSA puzzle solution to z*:
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z*
2. Tumbler reveals if and only if Alice pays.

2. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

3. Reveals fake puzzles
by sending solutions.

5. Checks fake puzzles
values “H(X) = Y”
correctly computed.

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = 1/(280)
m = # of valid transactions = 42

n = # of invalid transactions = 42

Alice

z*

I can’t tell which B’s
are real or fake.

2. Solves/ encrypts:
 for i in m+n:
 ϵi = RSA-1(SK, Bi)
 qi = Enc(Xi, Si)
 Yi = H(Xi)

(ϵ1,q1,Y1),(ϵ2,q2,Y2),(ϵ3,q3,Y3),...

(P1, P2, … Pn)

(X2, X5, X11, …)
4. Reveals Xi
of fake puzzles.

6. A proves all real puzzles
unblind to same puzzle z*

(R1, R2, … Rm)

Transaction offer
 H(X1) = Y1 AND H(X3) AND H(X4) … for

Transaction fulfill
 X1, X3, X4, ...

1. Makes m real puzzles:
 for i in m: Di = Blind(z*, Ri)
...and n fake puzzles:
 for j in n: Fi = RSA(PK, Pi)

Shuffle(D1,D2 …, Dm, F1, F2, …, Fn)
= (B1,B2,B3, … Bn+m)

(X1, X3, X4, …)
7. decrypts q’s
learns ϵ*

TumbleBit: Puzzle-Promise-Protocol

15

Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6)

1. B sends: a mix of hashes of valid and invalid claim transactions.

6. Bob and Tumbler run “quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (ϵi,σi) of the valid transactions correctly Bob learns a σ/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

At the end of this protocol: Bob should be convinced that for a (z, c):
 1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ
 2. AND the key ϵ is the solution to the RSA-puzzle z.
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

2. T Signs & Encrypts σ:
for Bi in B:
 σi = Sign(Bi)
 zi = RSA-1(SK,ϵi), ci = Enc(ϵi,σi)

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

4. T Reveals: ϵi for
invalid transactions.

ϵ2,ϵ3,ϵ5
5. B checks: invalid
transactions σi are
correctly computed.

T1,T2,T3,T4,T5,T6
3. B: reveals
transactions.

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(280)
m = # of valid transactions = 15

n = # of invalid transactions = 285

TumbleBit: Future Roadmap

16

People want TumbleBIt...

but to get TumbleBit into the hands of everyday users we need to build
...secure, safe, and usable software.

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Puzzle Promise

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

Transaction
 Claim

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

 If Tumbler corrupts z, c, X,or q it can cheat Alice or Bob!

TumbleBit prevents this via two protocols:

Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to RSA
puzzle z is a value ϵ which allows him learn σ.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

Transaction
Claim

Transaction
Claim

Transaction
Claim

Transaction
Claim

Transaction
Claim

Transaction
Claim

PayeesPayers

TumbleBit: Privacy

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Tumbler learns: (1) payer & time of payment, (2) # of payments each payee received.

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

σ+1 BTC to Tumbler

σ

+2 BTC to Tumbler σ

+1 BTC to Tumbler

σ+1 BTC to Tumbler

σ

+2 BTC to Tumbler

Payments are unlinkable:
No one other than the payer and payee can link

any payment from a payer to a payment a payee received.

TumbleBit: Classic Tumbler
1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

To run TumbleBit as a Classic Bitcoin Tumbler:
● Each payer just makes one payment.
● Each payee accepts only one payment.
● # of payers = # of payees.

Transaction
Claim

Transaction
Claim

PayeesPayers

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

σ+1 BTC to Tumbler

+1 BTC to Tumbler

σ+1 BTC to Tumbler

σ

Transaction
Claim

Provides k-anonymity:
Where k = # of payers = # of payee.

TumbleBit: Implementation

20

1. We wrote a proof-of-concept implementation:
● Source code is available on Github.
● We are working to improve it to make it user ready.

2. We “tumbled” 800 addresses to 800 addresses:
● In our paper we provide links to runs on

Bitcoin’s blockchain (mainnet).

3. Our implementation is Performant:
● 326 KB of Bandwidth.
● Computation time 0.3 - 0.6 seconds.
● Total time depends on network latency:

No latency ~0.6 seconds.
Boston to NYC ~1.6 seconds.
Boston to Tokyo ~ 4.18 seconds.

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Payment

Promise Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA-Dec(SK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

Transaction
 Claim

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Payment
Solver Protocol

Y = H(X)
q = Enc(X, ϵ*)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

 If Tumbler corrupts z, c, X,or q it can cheat Alice or Bob!

Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to RSA
puzzle z is a value ϵ which allows him learn σ.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

Payees (Bobs)

Payment Hubs: Privacy

22

Bob
1

Alice
1

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob
3

Alice

Alice
3

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

Payers (Alices)

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Claim

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

The main idea behind TumbleBit is a protocol which
provides atomicity but is also unlinkable (i.e. private).

Think of it like Unlinkable or Private HTLCs.

Transaction
Claim

Transaction
Claim

Payment Channel
 Tumbler → Payer

TumbleBit: Phases and Privacy

23

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob2

Bob3

Alice2

Alice3

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z*
1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Alices make many payments to Bobs.

3. Cashout Phase: Bobs and Alices close their payment channels.

Bobs don’t tell Tumbler when they learn σ’s...
...thus, Tumbler only see’s Alice to Tumbler payments.
This prevents Tumbler from performing a timing attack..

Tumbler learns two sets of things:
1. that an Alice paid an unknown party at time t,

2. during the payment phase the total # of payments each Bob received..

Puzzle-Promise-Protocol

24

Bob

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob3

At the end of this protocol: Bob should be convinced that for a (z, c):
 1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ
 2. AND the key ϵ is the solution to the RSA-puzzle z i.e z = ϵpk mod N
The protocol should never: allow Bob to learn a valid σ (without paying Tumbler).

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

z* = Blind(z)

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

1. Bob creates and randomly permutes:
m - valid transactions (reals)
n - invalid transactions (fakes)
B = A randomly permuted list of the
real and fake transactions hashes.

B = {H(),H(),H(),H(),H(),H()} = {B1,B2,B3,B4,B5,B6}

2. Tumbler signs each B and encrypts sigs under RSA puzzles:
 For all Bi in B: zi = ϵipk mod N, σi=Sig(T-SK, Bi), ci = Enc(ϵi,σi)

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)
3. Bob reveals which
 of the B’s are fake. B = {R,F,F,R,F,R}4. Tumbler

confirms fakes
are really fakes.
Reveals fake ϵi’s.

ϵ2,ϵ3,ϵ5
5. Bob checks that
Tumbler computed
fakes honestly.

6. Bob and Tumbler run “the quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (ϵi,σi) of the reals correctly then Bob learns a σ/gets paid,
Thus, to cheat Bob, Tumbler must all corrupt all the reals and none of the fakes.

Prob(Tumbler successfully cheats) = 1/(m+n choose m)

TumbleBit sets (m = 42, n = 42):
Prob.(Tumbler successfully cheats) = 2-80

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Payment

Promise Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA-Dec(SK, ϵ)
c = Enc(ϵ,σ) (z, c)

Hey Bob, if you find the
solution ϵ to this RSA puzzle z

you learn σ and 1 Bitcoin.

Hey Alice, I’ll sell a solution to
an RSA puzzle of your choice

for 1 Bitcoin

Transaction
 Claim

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

Transaction fulfill
 X for

ϵ*

σ

Fair exchange:
 for ϵ*

Y, q

Unblind(ϵ*)

Blind(z)

Decrypt(X, q)

X

Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to
RSA puzzle z is a value ϵ which allows him learn
σ and thereby claim 1 Bitcoin.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

ϵ

Decrypt(ϵ, c)

Payment
Solver Protocol

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Transaction

Escrow1
Transaction

Escrow2

Hey Bob, if you find the
solution ϵ to this RSA puzzle z

you learn σ and 1 Bitcoin.

Hey Alice, I’ll sell a solution to
an RSA puzzle of your choice

for 1 Bitcoin

Transaction
offer

H(x) = Y

Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to
RSA puzzle z is a value ϵ which allows him learn
σ and thereby claim 1 Bitcoin.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

Solution ϵ RSA-puzzle z → σ

TumbleBit Protocol

27

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

Transaction
Claim2

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2

σ
1

Alice signs Claim1

Payment Hub signs Claim2

σ
1

σ
2

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

HTLCs: Claim

X

Hash locks provide this property.

28

Alice Bob

Tumbler

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

(z, c)

z = ϵpk mod N
c = Enc(ϵ,σ)

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to
RSA puzzle z is a value ϵ which allows him learn
σ and thereby claim 1 Bitcoin.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.But what if the Tumbler is malicious

and cheats Alice and Bob?

I am going to walk through the puzzle promise protocol,
but not the puzzle solver protocol.

They both use the same basic technique.

 Alice pays Bob with RSA Puzzles

Tumbler
Alice Bob

Hey Bob, if you find the
solution ϵ to this RSA puzzle z

you get 1 Bitcoin.

Hey Alice, I’ll sell a solution to
an RSA puzzle of your choice

for 1 Bitcoin

z

Bob blinds
Puzzle.

z*

ϵ*

Bob unblinds
Puzzle.

ϵ

Alice can pay Bob through the Tumbler.

ϵ*
Alice buys
a solution.

z*

Remember how Payment Channels work:

Transaction
Escrow

Transaction
Claim1

Bob

σ +1 BTC

Tumbler can encrypt σ under an RSA-puzzle

 (c, z)
z = ϵpk mod N
c = Enc(ϵ,σ)

+1 BTC

If Bob learns the solution ϵ to z
Bob can decrypt c to σ and get 1 BTC.

 Alice pays Bob with RSA Puzzles

Tumbler
Alice Bob

Hey Bob, if you find the
solution ϵ to this RSA puzzle z

you get 1 Bitcoin.

Hey Alice, I’ll sell a solution to
an RSA puzzle of your choice

for 1 Bitcoin

z

Bob blinds
Puzzle.

z*

ϵ*

Bob unblinds
Puzzle.

ϵ

Alice can pay Bob through the Tumbler.

ϵ*
Alice buys
a solution.

z*

Remember how Payment Channels work:

Transaction
Escrow

Transaction
Claim1

Bob

σ +1 BTC

Tumbler can encrypt σ under an RSA-puzzle

 (c, z)
z = ϵpk mod N
c = Enc(ϵ,σ)

+1 BTC

If Bob learns the solution ϵ to z
Bob can decrypt c to σ and get 1 BTC.

Payment Hub: Privacy

31

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob2

Bob3

Alice2

Alice3

Payment
Hub

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

TumbleBit improves payment hubs so that
for each payment the payer can not be linked to the payees.

Payment Hub

32

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob
2

Bob
3

Alice
2

Alice
3

Payment
Hub

A payment hub: routes payment channels
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Escrow

Transaction
Escrow

Introduction

33

Core Idea: Unlinkable Hashed Time Locked Contracts (U-HTLCs)
● HTLCs allow payment via an intermediary s.t. intermediary can’t steal

payment…
● ...however that

The core idea behind TumbleBit is:
A protocol for paying via an intermediary s.t.
1. Atomicity btw transactions → intermediary can’t steal payments,
2. Unlinkable Atomicity → intermediary doesn’t learn who is being paid.

Outline

34

● Payment hubs
○ Bitcoin transactions/payment channels
○ What are Bitcoin payment hubs?
○ Scalability benefits of payment hubs
○ Are payment hubs private?

● TumbleBit as a Payment Hub
○ RSA-blind puzzles
○ TumbleBit as an unlinkable payment hub
○ Ensuring fair-exchange (TumbleBit can’t steal)
○ Puzzle-Promise-Protocol

Motivation

35

Technical challenges facing Bitcoin: Privacy, Scalability

Privacy:
● Bitcoin is not anonymous
● Payment history is saved to the blockchain i.e. an eternal public record

Scaling Transaction velocity:
● Transactions are confirmed on the blockchain (avg wait time ~10 mins)
● No confirmation = double spending possible

Scaling Transaction volume:
● Bitcoin: 7 transactions/sec max throughput[1]
● Visa (average): 2000 transactions/sec[1]
● Visa (peak): 56,000 transactions/sec[1]
● Limiting factor is space in Bitcoin’s blockchain

TumbleBit is designed to address these challenges by providing
privacy and scalability without introducing trust.

1. Scaling transaction
velocity (speed of
payments):
● TumbleBit as a payment hub

can make payments in
seconds.

2. Scaling transaction volume
(max # of payments):
● Payment hubs allow many

payments to one party
to be aggregated into two
on-blockchain transactions.

● These payments don’t need
to be stored or validated on
the blockchain.

3. Anonymity and payment
privacy:
● TumbleBit provides

payment privacy via
unlinkability.

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.
scalabilityPayment Hubs provide:

Transaction velocity:
● Transactions confirmed on the blockchain
● No confirmation = double spending possible
● Avg confirmation time is ~10 min

Transaction volume: Max # payments
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor here is space in the blockchain

Privacy:
● Bitcoin is not anonymous
● Payment history saved in the blockchain,

i.e. an eternal public record

All Parties in Bitcoin
have ECDSA key pairs.

Bitcoin Transactions

36

BobAliceAlice-PK,
Alice-SK

Bob-PK,
Bob-SK

Transaction: B from(A)
Release bitcoins to transaction:
 If Signed by Bob

2. To setup a payment of 1 BTC to Bob, Alice creates a transaction B
moving her bitcoin from transaction A to transaction B.

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Transaction: A
Release bitcoins to transaction:
 If signed by Alice

Payment in Bitcoin occurs by transferring bitcoins in one transaction to a new transaction...
...thus, ownership is merely holding a secret which can authorize such transfers.

Unspent transactionsSpent transactions

1. Alice has 1 BTC
in transaction A.

...thus transferring that bitcoin from transaction A to transaction B.

1 BTC richer!

σ = Sig(Alice-SK, B)

3. Alice then signs transaction B to fulfill A’s condition...

✓

Transaction conditions (“release bitcoins to transaction if”) are programmable:
● via a very limited non-turing complete language called Script,
● can verify multiple signatures and perform a few other operations.

I will talk more about it later.

Transaction: Claim2
2 Bitcoins to Alice, 2 Bitcoin to Bob

Transaction: Claim1
3 Bitcoins to Alice, 1 Bitcoin to Bob

Transaction: Claim4
0 Bitcoins to Alice, 4 Bitcoin to Bob

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Unidirectional Payment Channels

37

BobAlice

Tumbler

3. Alice can pay Bob
multiple times by signing
Claim transactions.

Alice-PK,
Alice-SK

Bob-PK,
Bob-SK

4. Bob closes the channel
by signing Claim3
and posting it.

Sign(Alice-SK, Claim2)
Bob has 0 BTC
in the channel.

Sign(Alice-SK, Claim3)

1. Alice opens a payment channel
by placing 4 BTC in an escrow transaction.

Transaction: Escrow
Release bitcoins to transaction:
 If signed by Alice & Bob
 or
 If signed by Alice & 1 month has passed

4. Bob closes the channel
by signing Claim3 and posting
the transaction to the blockchain.

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Sig(Alice-SK, Claim1)

Sig(Bob-SK, Claim3)

3 BTC
to Bob

1 BTC
to Alice

Bob has 1 BTC
in the channel.Sig(Alice-SK, Claim2) Bob has 2 BTC
in the channel.

Sig(Alice-SK, Claim3)

Bob has 3 BTC
in the channel.

2. Escrow transaction confirmed on the blockchain.

Advantages of Payment channels
Scales Tx volume: Two transaction on the blockchain allow Alice to pay Bob many times.
Scales Tx velocity: Risk of Double spending ~=0 so payments happen in milliseconds.
No trust required: Neither Alice nor Bob can cheat each other.
 If Bob walks away Alice gets her money back after 1 month.

Unidirectional Payment Channels

38

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Disadvantages of Payment channels:
1. To pay many different Bobs, requires many different channels.
2. Each channel setup is expensive in time (~10 minutes)
3. ...and money (i.e. BTC sitting in escrows that can’t be used).

Bob2

Bob3

Alice2

Alice3

A Payment Hub solves these disadvantages.

Alice
Bob

Payment Hub: Details

Transaction

1. Alice signs a transaction paying
1 BTC to the payment hub.

Transaction

2. Payment hub signs a transaction paying
1 BTC to Bob.

Alice wants to pays Bob via the payment hub.

But what if the payment hub is malicious
and cheats Alice and Bob?

It takes Alice’s bitcoin
but doesn’t pay Bob.

Payment
Hub

Addr
A

▪ Bitcoin Scripts

Fair exchange is robust if either party is malicious!

Goal: Fair Exchange/Atomic swaps:

Bitcoin Transaction Contracts

“Alice

pays to a spending
transaction has a value X
satisfying condition C.

Transaction Offer: X for .

“Here is X .”

Transaction Fulfill: X for .

Alice

Bitcoin can only check two cryptographic conditions:
1. Hash(X) = Y,
2. Verify ECDSA Signature on a transaction.

As Shown,
transactions in Bitcoin set conditions that must be fulfilled by the spending transaction.
These conditions are flexible and can be

Payment
Hub

X

41

Alice Bob

X

Transaction
Offer H(X)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
H: Get X

Hash Condition:
X such that
Hash(X) = Y.

Payment Hub: Fair Exchange

Payment
Hub

Transaction
Offer H(X)=Y

for

X
Transaction

Fulfill for X

Fair exchange 1:
H: Gives X
B: Gets 1 bitcoin

Y

X

Hash Condition:
X such that
Hash(X) = Y.

Fair exchange prevents the Payment Hub from stealing.

Payment Hub: Privacy

42

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob2

Bob3

Alice2

Alice3

Payment
Hub

While payment hubs are convenient, they do not offer any
privacy against the payment hub.

The payment hub can trivially link the payer to the payee via the
H(X)=Y used to ensure atomicity.

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

TumbleBit improves payment hubs so that
for each payment the payer can not be linked to the payees.

Outline

43

● Payment hubs
○ Bitcoin transactions/payment channels
○ What are Bitcoin payment hubs?
○ Scalability benefits of payment hubs
○ Are payment hubs private?

● TumbleBit as a Payment Hub
○ RSA-blind puzzles
○ TumbleBit as an unlinkable payment hub
○ Ensuring fair-exchange (TumbleBit can’t steal)
○ Puzzle-Promise-Protocol

RSA blinding can be used to blind RSA puzzles

 RSA Puzzles

● An RSA Puzzle is just an RSA encryption of some value ϵ:
 z = encRSA(ϵ, pk) = ϵpk mod N

● Only the party that knows sk can solve RSA puzzles:
 ϵ = decRSA(z, sk) = zsk mod N = (ϵpk)sk mod N

2. Bob2 blinds his puzzle
and requests a solution.

z* = Blind(z2)

z2

z1

1. Tumbler issues two puzzles.

3. Tumbler solves
the blinded puzzle
and generates a
blinded solution ϵ*.

ϵ*

Tumbler

Bob1

Bob2

4. Bob2 finds the solution
to z2 by unblinding ϵ*.

ϵ2 = Unblind(ϵ*)

Tumbler can not link the blinded RSA puzzle it solves
to any of the RSA puzzles it issues.

Unlinkable Payments

45

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob2

Bob3

Alice2

Alice3

We can use RSA puzzles to hide the link between payers and payees.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

...but how do we ensure that the tumbler does not cheat.

z

z

z

z*

z*

z*

z* = Blind(z)

All dominations are the same.

Puzzle-Promise-Protocol

46

Many payments
are made here.

Payments
received are
reflected here.

Payment unlinkability:
1. In payment: Tumbler can see that Alice paid (but no who she paid)
2. In cashout: Tumbler learns aggregate funds received by Bob.

Unlinkability

47

Many payments
are made here.

Payments
received are
reflected here.

Payment unlinkability:
1. In payment: Tumbler can see that Alice paid (but no who she paid)
2. In cashout: Tumbler learns aggregate funds received by Bob.

X
Addr

A

▪ Bitcoin Scripts

Fair exchange is robust if either party is malicious!

Goal: Fair Exchange/Atomic swaps:

Bitcoin Transaction Contracts

“Addr
A

pays to a spending
transaction has a value X
satisfying condition C.

Transaction Offer: X for .

“Here is X .”

Transaction Fulfill: X for .

Alice

Bitcoin transaction scripts are very limited.
We can only check two types of cryptographic conditions C:

1. Hash(X) = Y,
2. ECDSA_CheckSignature(Tx, PUBLIC_KEY) = TRUE

 TumbleBit: Paying with RSA-Puzzles

Tumbler
Alice Bob

z

Bob blinds
Puzzle.

z*

ϵ*

Bob unblinds
Puzzle.

ϵ

ϵ*
Alice buys
a solution.

But what if the Tumbler is malicious
and cheats Alice and Bob?

Tumbler could take Alice’s
money and fail to provide a

solution?
 Tumbler could refuse to

pay for a solution?

To prevent cheating we develop protocols
that ensure blockchain mediated fair exchange.

Payment Hubs: Preventing Theft

50

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob2

Bob3

Alice2

Alice3

Payment
Hub

3. Alice2 performs a fair-exchange with Hub
s.t. Hub gets 1 BTC via Alice2→Hub if and only if Alice2 learns X.

2. Hub sends Bob3 1 BTC.
However payment isn’t valid
without a value X s.t. H(X)=Y

We want to ensure that the transaction Alice2→Hub is atomic with Hub→Bob3.

1. Alice2 asks Hub to setup a payment.

4. Fair-exchange completes,
 Alice2 learns X, Hub gets 1 BTC.

X

5. Alice2 tells Bob3 X,

All Parties in Bitcoin
have ECDSA key pairs.

Background: Bitcoin Transactions

51

BobAliceAlice-PK,
Alice-SK

Bob-PK,
Bob-SK

Transaction: B from(A)
Release funds to transaction:
 If Signed by Bob

2. To setup a payment to Bob of 1 BTC Alice creates a transaction B
moving her bitcoin from transaction A to transaction B.

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Transaction: A
Release funds to transaction:
 If signed by Alice

Payment in Bitcoin occurs by transferring bitcoins in one transaction to a new transaction...
...thus, ownership is merely holding a secret key which can authorize such transfers.

Unspent transactionsSpent transactions

1. Alice has 1 BTC
in transaction A.

...thus transferring that bitcoin from transaction A to transaction B.

1 BTC richer!

σ = Sig(Alice-SK, B)

3. Alice then signs transaction B to fulfill A’s condition...

✓

Transaction: Claim2 from(Escrow)
2 Bitcoins to Alice, 2 Bitcoin to Bob

Transaction: Claim1 from(Escrow)
3 Bitcoins to Alice, 1 Bitcoin to Bob

Transaction: Claim4 from(Escrow)
0 Bitcoins to Alice, 4 Bitcoin to Bob

Transaction: Claim3 from(Escrow)
1 Bitcoins to Alice, 3 Bitcoin to Bob

Background: Payment Hub

52

BobAlice

Alice was able to make N instant transactions to Bob.

Tumbler

2. Alice can pay Bob
multiple times by signing
Claim transactions.

Alice-PK,
Alice-SK

Bob-PK,
Bob-SK

4. Bob closes the channel
by signing Claim3
and posting it.

Sign(Alice-SK, Claim2)
Bob has 0 BTC
in the channel.

Sign(Alice-SK, Claim3)

1. Alice opens a payment channel
by placing 4 BTC in an escrow transaction.

Transaction: Escrow
Release funds to transaction:
 If signed by A & B
 or
 If signed by A & 4 days have passed.

3. Bob closes the channel
by signing Claim3 and posting
the transaction to the blockchain.

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Sig(Alice-SK, Claim1)

Sig(Bob-SK, Claim3)

3 BTC
to Bob

1 BTC
to Alice

Bob has 1 BTC
in the channel.Sig(Alice-SK, Claim2) Bob has 2 BTC
in the channel.

Sig(Alice-SK, Claim3)

Bob has 3 BTC
in the channel.

2. Escrow transaction confirmed on the blockchain.

TumbleBit: The Basic Idea

53

Tumbler

Bob3

Bob2

Bob1Alice1

Alice2

Alice3

Intuition: Tumbler gives out locked bitcoins and sells keys.

Alice1 pays the tumbler 1 Bitcoin for the key to Bob2’s lock.

TumbleBit: Overview

54

Tumbler

Bob3

Bob2

Bob1Alice1

Alice2

Alice3

Intuition: Tumbler gives out locked bitcoins and sells keys.

Alice1 pays the tumbler 1 Bitcoin for the key to Bob2’s lock.

Gives it to Bob2.

Alice3 pays Bob3 the same way.

Bob1 and Bob3 unlock their bitcoins and cash out.

Related Work

Bitcoin-Compatible
Schemes

(aka “Mixing Services”)

Vulnerable to bitcoin theft

Intermediary
breaks

anonymity

Mixing takes
hours

55

Xim

Vulnerable to DoS & Sybil Attacks

Limited Anonymity

New Cryptocurrencies
Not compatible with bitcoin

TumbleBit

RSA-Puzzle-Solver Protocol

56

I’m only going to walk through the RSA-Puzzle-Solver
Protocol, but it is similar to the Puzzle-Promise-Protocol.

Payment Hubs: Preventing Theft

57

Bob1Alice1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob2

Bob3

Alice2

Alice3

Payment
Hub

We want to ensure that the transaction Alice2→Hub is atomic with Hub→Bob3.

X

X

The transaction Hub→Bob3
is only valid if Bob knows X s.t. H(X) =Y

X

The transaction Hub→Bob3
is only valid if Bob knows X

58

Puzzle-Solver-Protocol
Blinded puzzle
 = yz*

Alice mixes the puzzle
she want solved with
fake puzzles for which
she know the solution.

Tumbler solves all the
puzzles, encrypts the
solutions and commits
to keys.

Alice reveals the fake
puzzles and asks the
Tumbler to open the
commitments.

Tumbler checks that
Alice knows all the
solutions to the fake
puzzles and then
opens commitments.

Alice checks that all
fake puzzle
commitments open to
correct values.

Tumbler ensures that
all the real puzzles
have the same
solution.

Alice learns the
solution to y and
sends it to Bob.

The Tumbler uses this protocol to convince Alice

If she learns a set of hash preimages:
 Hash(k1) = h1 … Hash(km) = hm

Then she also learns the solution to RSA Puzzle y:
ysk mod n

Security of Puzzle-Solver-Protocol

59

M = size of real set

N = size of fake set

● The Tumbler cheats successfully if:
 Alice is convinced k1…km reveal RSA solution to y.
 AND
 k1…km do not reveal RSA solution to y.

● Two parameters:
 M and N determine cheating success prob.

● If the Tumbler corrupts 1 to M-1 solutions:
 … Alice will still learn the solution.

● If the Tumbler corrupts >M solutions:
 … Alice will always detect cheating.

● The Tumbler must corrupt exactly M solutions
 … and must only corrupt the real set.

Prob of the Tumbler cheating:
1/(M+N choose M)

or
the probability that the Tumbler correctly guesses

the real set of puzzles.

M = 15, N = 285
Prob of cheating = 2-80

Puzzle-Promise-Protocol

60

TumbleBit: Roadmap

61

62

Puzzle-Solver-Protocol

Fair exchange 1:
B: Gives σ
B: Gets 1 bitcoin

sn

σ

Transaction
Offer V for

Transaction
Fulfil V for

V

Transaction

Offer for σ

Transaction
Fulfil for V

 TumbleBit: Paying with RSA-Puzzles

ϵ*

63

Fair exchange 1:
A: Gives 1 bitcoin
A: Gets 1 voucher

Alice Bob

(z, c)

z= ϵpk mod N
c = Enc(ϵ,σ)

Tumbler

Bitcoin faces three technology challenges:

64

1. Scaling transaction velocity (speed of payments):
● Bitcoin transaction confirmations is ~10 min,

… occasionally an hour or more.
● No confirmation = no double spending protection.

2. Scaling transaction volume (max # of payments):
● “Bitcoin achieves 7 transactions/sec maximum throughput

…[Visa] processes 2000 transaction/sec on average,
with a peak rate of 56,000 transactions/sec”[1]

● To compete with mainstream payment processors
… Bitcoin needs to support much higher transaction volume.

● Limiting factor here is space in the blockchain.

3. Anonymity and user privacy:
● Bitcoin transactions are saved in the blockchain

… creating an eternal public record of payment history.

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

Paying with RSA-Puzzles

65

Tumbler

Transaction 1:
Bob can claim 1 Bitcoin
if he knows a

Bitcoin Anonymity?

Satoshi Nakamoto, 2008

66Addr
A Addr

B

Alice Bob

Introduction

67

Privacy:
● Bitcoin is not anonymous
● Payment history saved in

an eternal public record

In this talk I am only going to tell you about how
TumbleBit provides trustless payment privacy.

1. Scaling transaction
velocity (speed of
payments):
● TumbleBit as a payment hub

can make payments in
seconds.

2. Scaling transaction volume
(max # of payments):
● Payment hubs allow many

payments to one party
to be aggregated into two
on-blockchain transactions.

● These payments don’t need
to be stored or validated on
the blockchain.

3. Anonymity and payment
privacy:
● TumbleBit provides

payment privacy via
unlinkability.

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

TumbleBit addresses these challenges:

Provides Payment Privacy:
● Via Payment unlinkability
● and anonymity

Scales velocity (as a payment hub):

● payments take seconds

As a payment hub tumbleBit scales volumne
Scales Transaction volume (as a payment hub)
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor here is space in the blockchainscalabilityPayment Hubs provide:

Transaction velocity:
● Transactions confirmed on the blockchain
● No confirmation = double spending possible
● Avg confirmation time is ~10 min

Transaction volume: Max # payments
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor here is space in the blockchain

Privacy:
● Bitcoin is not anonymous
● Payment history saved in the blockchain,

i.e. an eternal public record

Transaction velocity:
● Transactions confirmed on the blockchain
● No confirmation = double spending possible
● Avg confirmation time is ~10 min

Transaction volume: Max # payments
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor is space in the blockchain

Introduction

68

Privacy:
● Bitcoin is not anonymous
● Payment history saved in

an eternal public record

In this talk I am only going to tell you about how
TumbleBit provides trustless payment privacy.

1. Scaling transaction
velocity (speed of
payments):
● TumbleBit as a payment hub

can make payments in
seconds.

2. Scaling transaction volume
(max # of payments):
● Payment hubs allow many

payments to one party
to be aggregated into two
on-blockchain transactions.

● These payments don’t need
to be stored or validated on
the blockchain.

3. Anonymity and payment
privacy:
● TumbleBit provides

payment privacy via
unlinkability.

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

TumbleBit addresses these challenges:

Provides Payment Privacy:
● Via Payment unlinkability
● and anonymity

Scales velocity (as a payment hub):

● payments take seconds

As a payment hub tumbleBit scales volumne
Scales Transaction volume (as a payment hub)
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor here is space in the blockchainscalabilityPayment Hubs provide:

Transaction velocity:
● Transactions confirmed on the blockchain
● No confirmation = double spending possible
● Avg confirmation time is ~10 min

Transaction volume: Max # payments
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor here is space in the blockchain

Privacy:
● Bitcoin is not anonymous
● Payment history saved in the blockchain,

i.e. an eternal public record

Transaction velocity:
● Transactions confirmed on the blockchain
● No confirmation = double spending possible
● Avg confirmation time is ~10 min

Transaction volume: Max # payments
● Bitcoin: 7 Tx/sec max throughput[1]
● Visa: (avg) 2000 Tx/sec[1]
● Visa: (peak) 56,000 Tx/sec[1]
● Limiting factor is space in the blockchain

Technical challenges facing Bitcoin:

TumbleBit: scalability and payment
privacy.

69

1. Scaling transaction velocity (speed of payments):
● TumbleBit as a payment hub can make payments in seconds.

2. Scaling transaction volume (max # of payments):
● Payment hubs allow many payments to one party

to be aggregated into two on-blockchain transactions.
● These payments don’t need to be stored or validated on the

blockchain.

3. Anonymity and payment privacy:
● TumbleBit provides payment privacy via unlinkability.

✓

✓

✓

In this talk I am only going to tell you about how
TumbleBit provides trustless payment privacy.

