TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous

Payment Hub

o ‘
Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi,

Alessandra Scafuro, Sharon Goldberg

- ; P BOSTON
2 ~ Scaling Bitcoin Milan 2016 UNIVERSITY

Introduction

TumbleBit is:
1. Private: Unlinkable Bitcoin payments and k-anonymous mixing,

2. Untrusted: No one including Tumbler can steal or link payments.
3. Scalable (payment hub): scales transaction velocity and volume.
4. Compatible: Works with today's Bitcoin protocol.

Why is compatibility hard?
Our protocol must work with highly constrained Bitcoin scripts
which provide two very limited cryptographic operations.

Two ways to use TumbleBit:

When used as a payment hub, TumbleBit helps scale
- Bitcoin’s transaction velocity (faster payments),
and transaction volume (higher maximum payments).

When TumbleBit is used as a payment hub:
e Unlinkability within the payment phase,
® Payments confirmed in seconds,
® Payments are off-blockchain,

... don’t take up space on the blockchain.

Background: Payment Hub

A payment hub: routes payment channels.

Unidirectional Payment Channel
Alice — Payment Hub

Unidirectional Payment Channel
Payment Hub — Bob

Transaction: Escrowl
Output Script: 2-of-2 multisig

Must be signed by Alice and Payment Hub

Refunded to Alice: after 1 month

Transaction
B Escrowl

Transaction

O.1 Claim1

o

1

Transaction: Escrow?2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction
@ Escrow2

v, Transaction

Claim2
&)

...But what if the hub is malicious,

[Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

[Hash locks provide this property. }

Background: Payment Hub

A payment hub: routes payment channels.

‘ Unidirectional Payment Channel

Alice — Payment Hub

Transaction: Escrowl

Output Script: 2-of-2 multisig

Must be signed by Alice and Payment Hub

Refunded to Alice: after 1 month

>

Transaction
B Escrowl

Transaction
1 Claim1

o (o)

H(x) =Y?

Bob, the value of x is....

1'x

Unidirectional Payment Channel
Payment Hub — Bob

Transaction: Escrow2

Output Script: 2-of-2 multisig
Must be signccs Bimaac Bob

| don’t know X, so...
| can’t spend Claim2.
Alice, learn x to pay me.

Transaction
@ Escrow2

Transaction
Claim2

< HX)=Y? B

-

Thus, using hash locked transactions or HTLCs a payment hub can prevent theft,
however this is provides no privacy against the payment hub.

L

)

Background: No Privacy

Transaction Transaction
Escrow Escrow

Transaction No privacy Transaction
im slaim
(o)) vo f?'n payment hub. (oY

1Vment Transaction
HUD Escrow

Transaction Transaction
cla ,.‘ aim
fioa)-v7 DL

Tra nsaction
Escrow

Transaction
Escrow

Transaction

Transaction

Claim

Claim

H(x3) =V?

o

Transaction
Escrow

Payees

Think of it like Unlinkable or Private HTLCs.

The main idea behind TumbleBit is a protocol which
provides atomicity but is also unlinkable (i.e. private).

RSA Puzzles

® An RSA Puzzle is just a “textbook RSA encryption” of some value €:
RSA(PK, €) =z

® Only the party that knows SK can solve RSA puzzles:
RSAY(SK, z) = RSAY(SK, RSA(PK, €)) = €

RSA blinding can be used to blind RSA puzzles

- 2
Tumbler Z,
< z z* = Blind(z,)
RSA(SK,z*) = e*
et —>| ¢, = Unblind(e*)

Bob, learns the solution €, to the puzzle z,

Tumbler can not link the blinded RSA puzzle it solves z*
to any of the RSA puzzles it issued (z,, z,).

= 1/

~,
;,"’ If Tumbler corrupts z, ¢, X,or q it can cheat Alice or Bob!

_ .

Transaction \ ;;d Transaction A

ﬁ) Escrowl N @ Escrow2 Bob

Tumbler M= T T T L
i Puzzle Promise
‘E RS,;(PK, €) I Protocol :

Engl€,o) L zZ, C —

— : ’ I(') ________ : Blind(z)
- ——— = = = = = == z* : |
1/ Puzzle nl / : :
't Solver Protocol I
i = RSA'Y(SK,z*) | | |
:: Enc(X, €*) : I
i I
< = H(X) ! :

. 1! , rI Learn € get

Fair eXCha’rjge' = Transaction offer | : |
for € I HX) =Yfor @ B : [
l . I
Transaction fulfill l I |

. Puzzle-Solver-Protocol:
. Tumbler convinces Alice the preimage X . Tumbler convinces Bob that the solution to RSA

. where Hash(X) = Y will allow her to learn €*. ! . puzzle z is a value € which allows him learn ©. ;
u %

TumbleBit: Phases

Privacy offered the TumbleBit Payment Hub

Tumbler’s view:
(1) payer of each payment, (2) # of payments each payee received.

Unlinkability def:
All interaction graphs compatible with the tumblers view are equally likely.

— ——~—~—_# Received
@)

TumbleBit: Classic Tumbler

To run TumbleBit as a Classic Bitcoin Tumbler:
® Each payer just makes one payment.
e Each payee accepts only one payment.
e # of payers = # of payees.

Close channel

Close channel
T:A1, B1:0 T:0, B 1

Pay 1 BTC

Pay 1 BTC

Close channel Close channel
T:0, 82:1 T:0, B 1
Close channel Close channel
T:A1, B3:0 T:0, B3.1

Payees

ees

Provides k-anonymity:
Where k = # of payers = # of payee.

TumbleBit: Implementation

We wrote a proof-of-concept implementation of the Tumbler mode:
e We are working on improving it and making it user friendly.

® Sourcecode and a development roadmap are available on
Github.

We “tumbled” 800 payments:

Our implementation is Performant (per TumbleBit payment):
e 326 KB of Bandwidth,
® Puzzle-Solver takes ~0.4 seconds to compute
e Total time depends on network latency:
No latency ~0.6 seconds.
Boston to Tokyo ~6 seconds(clear) and ~11 seconds(both
parties user TOR)

10

Related Work

Bitcoin-Compatible

New Cryptocurrencies Schemes
Not compatible with bitcoin (aka “Mixing Services”)

Y
J

®CASH @ MONERO / Vulnerable to bitcoin theft \

Blindcoin:

@erocoin Project =J

IS H

Cryp!

i)
XL O
\ True Anonym tocurrency

/\Iulnerable to DoS & Sybil Attacks

CJ/ ' v h
gy oo Limited Anonymity Mixing takes

hours

Intermediary | | Xim y

E ﬁ;} breaks
\ _ ' \anonymity/ TumbleBit

CoinShuffle

11

Conclusion

TumbleBit provides:
private untrusted scalable payments via today’s Bitcoin:

1. Private: Unlinkable or k-anonymous payments
Trustless: Tumbler can not steal or link payments.
3. Scalable (payment hub): scales Bitcoin’s transaction velocity and volume.

=

We have running code (for TumbleBit classic tumbler):

e Our code runs on Bitcoin’s mainnet blockchain.
e \We have published our code on github..
e ...and we working to improve it and make TumbleBit easy and safe to use.

We are hiring a full time engineer (Boston),
N email me if interested.

Questions?

Source code + roadmap: https://github.com/BUSEC/TumbleBit

Paper: https://eprint.iacr.org/2016/575.pdf

Alice Tumbler __________ . Bob
) ,’ Puzzle-Promise \I —
— = \ Protocol /
O 6 3 BTC 3BTC ====-= r___" (c,2)
2 = »Z
£2) |))
Av | Escrow Transaction Escrow Transaction
M Z=Blind(z) —
=R .3 T En———
(E) Z »¢” RSA-Puzzle-Solver ~\
2 £ >\ Powcl e 1 BTC from A to B
s g o] I e [
v I
' M Unblind(€)=€ —p €
o = 0= Dec (c)——l
N a r €
% -% Cash-out Transaction Cash-out Transaction
<= S 1 BT
< 8 2 BTC 1 BTC | 2 BTC \S

Ask questions on twitter: @Ethan_Heilman

TumbleBit: Puzzle-Solver-Pr

| can’t tell which B’s
are real or fake.

z* Fair exchange/contingent payment for an RSA puzzle solution
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z* O.
2. Tumbler reveals if and only if Alice pays. H’
Tumbler

1. Makes m real puzzles:
for i in m: Di = Blind(z*, Ri) Shuffle(D1,D2 ..., Dm, F1, F2, ..., Fn) 2. 5°'_"_es/ encrypts:
...and n fake puzzles: =(B1,B2,B3, ... Bn+m) > for_| In m+?: _
forjin n: Fi= RSA(PK, Pi) €l = RSA™(SK, Bi)
gi = Enc(Xi, Si)
Yi = H(Xi)

3. Reveals fake puzzles
by sending solutions.

1Pty P 2o LT 4. Reveals Xi
5. Checks fake puzzles < (X2, X5, X11, ...) of fake puzzles.

values “H(X) = Y”
correctly computed.

r (€1,q1,Y1),(€2,92,Y2),(€3,93,Y3),...

6. A proves all real puzzles
unblind to same puzzle z*

‘ (R, R2, ... Rm) >

Transaction offer

H(X1) = Y1 AND H(X3) AND H(X4) ... for @

7. decrypts q’s
learns €* (X1, X3, X4, ...) = @

If Tumbler computes any (qi,€i,Yi) of the real puzzles correctly Alice learns €%,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

TumbleBit: Puzzle-Promise-Protocol

At the end of this protocol: Bob should be convinced that for a (z, c):
1. The ciphertext ¢ decrypts to O under a key € i.e Dec(€,c) = O
[] 2. AND the key € is the solution to the RSA-puzzle z.
™ The protocol should never: allow Bob to learn a valid o (without paying).

(%

Turﬁbler I 1. B sends: a mix of hash&gof valid and invalid claim transactions. I
- B = H(T1),H(@)MH(MLH(@),H(T&
AN
]3' TBS_'fgn;& AR B ‘ | This is why the protocol is hard, |
or .' |n. o otherwise Tumbler could convince Bob i |t
Ci= Syf N\
zi = RS -
Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(2%°)

m = # of valid transactions = 15
n = # of invalid transactions = 285

| R

e L CITCUINIT,. IIIVUIIJ

€2,€3,e5 >| transactions oi are

4. T Reveals: €i for |
invalid transactions. I

correctly computed.

6. Bob and Tumbler run “quotient protocol” ensuring that:
¢——] if Bob learns €1, Bob can use that knowledge to learn €4,€6. R ——
(e4/€1 mod N, €6/€4 mod N)

If Tumbler computes any (€i,01i) of the valid transactions correctly Bob learns a o/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

TumbleBit: Future Roadmap

People want TumbleBIt...

Ethan % Heilman @Ethan Heillman - Aug 2¢ 4,943

MNew version of TumbleBit rewritten to focus on anonymity

of #Bitcoin payment hubs/micropayment channels: C++ W42
eprint.iacr.org/2016/575 #privacy

View Tweet activity

but to get TumbleBit into the hands of everyday users we need to build
...secure, safe, and usable software.

Phase 1: Code Safety and Testing

Mowve as much code as possible into python for improved memaory safety.
Modularize code to allow our core protocol to be used in other settings.
Replace openssl-ECDSA with libsecp25h6kl1.

Phase 2: Server Features

Payment Hub support.

Misbehavior reactive server and client.
Session Management and parallelization.
TOR integration.

Standardized REST Interface.

Phase 3: Usability and Wallets

Wallet Prototype.

Classic Tumbler Wallet integration.

Payment Hub Wallet integration.

Wallet to wallet demo. 16

= 1/

~,
;,"’ If Tumbler corrupts z, ¢, X,or q it can cheat Alice or Bob!

_ .

Transaction \ ;;d Transaction A

ﬁ) Escrowl N @ Escrow2 Bob

Tumbler M= T T T L
i Puzzle Promise
‘E RS,;(PK, €) I Protocol :

Engl€,o) L zZ, C —

— : ’ I(') ________ : Blind(z)
- ——— = = = = = == z* : |
1/ Puzzle nl / : :
't Solver Protocol I
i = RSA'Y(SK,z*) | | |
:: Enc(X, €*) : I
i I
< = H(X) ! :

. 1! , rI Learn € get

Fair eXCha’rjge' = Transaction offer | : |
for € I HX) =Yfor @ B : [
l . I
Transaction fulfill l I |

~Puzzle-Promise-Protocol:
. Tumbler convinces Bob that the solution to RSA

| Puzzle-Solver-Protocol:
i Tumbler convinces Alice the preimage X
. where Hash(X) =Y will allow her to learn €*.

Payers

TumbleBit: Privacy

Payments are unlinkable:
No one other than the payer and payee can link

any payment from a payer to a payment a payee received.

Transaction -

Transaction

T
h

GB)Escrow

@Escrow

Transaction

Claim

Transaction
Claim t@

Transaction

‘Transaction

(c,2),(c,2),(c,2),... ‘I

@Escrow @Escrow

Transaction

@ Claim @

Transaction
Claim

Transaction

@Escrow

Transaction

Claim

+2 BTC to Tumble:

>

ﬂ (c,2),(c,2),(c,2),... 1

-
(c,2),(c,2),(c,2),...

Tumbler learns: (1) payer & time of payment, (2) # of payments each payee received.

TumbleBit: Classic Tumbler

To run TumbleBit as a Classic Bitcoin Tumbler:
® Each payer just makes one payment.
® Each payee accepts only one payment.

e # of payers = # of payees.

Transaction

@ Escrow
+1 BTC to Tumbl

e
C “f,

Transaction

@ Escrow

Transaction

@ Escrow
+1 BTC to Tumble=

Transaction

@ Escrow

Transaction

Claim \@

Transaction

Payees

(c,2),(c,2),(c,2),... 1

@ Escrow

Transaction
Claim @&

Transaction
T @Escrow

Transaction
Claim B

(c,2),(c,2),(c,2),... 1

(c,2),(c,2),(c,2),...
—

Provides k-anonymity:

Where k = # of payers = # of payee.

TumbleBit: Implementation

1. We wrote a proof-of-concept implementation:
® Source code is available on Github.
e \We are working to improve it to make it user ready.

2. We “tumbled” 800 addresses to 800 addresses:

In our paper we provide links to runs on
Bitcoin’s blockchain (mainnet).

3. Our implementation is Performant:

326 KB of Bandwidth.

Computation time 0.3 - 0.6 seconds.
Total time depends on network latency:
No latency ~0.6 seconds.

Boston to NYC ~1.6 seconds.

Boston to Tokyo ~ 4.18 seconds.

a a A

;,"’ If Tumbler corrupts z, ¢, X,or q it can cheat Alice or Bob!

Transacti(“

Tumbler

@ @ Escrowl

,);..:

Transaction

1Y Payment .
‘E jDeC(SK €) i Promise Protocol :
(€,0) L Z,C
I(_____) ________ : Blind(z)
< - o e = = z* : |
I Payment | : I
I Solver Protocol : : !
I ' |
t z* : ! ! I
Ii .l-____.lll___*‘__[____.! _______________________ I _____________
- L Y.q Puzzle-Promise-Protocol: -
SA

Fair exchange: Transaction offer

. Tumbler convinces Bob that the solutlon

| Puzzle-Solver-Protocol:

»| Unblind(e*)

v

le z is a value € which allow
for €* H(X) = Y f puzz
00=Yfor @ =t e N
: |
il : |
: |
* .
___ € t I
! |
|
i Tumbler convinces Alice the preimage X I _ |
. where Hash(X) = Y will allow her to learn €*. I Transaction

Claim o

|| Dec(€, c)

Payers (Alices)

Payment Hubs: Privacy

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

_|

Payment Channel
Tumbler — Payer

|_

Transaction

Payees (Bobs)

Escrow

Transaction
Claim
Transaction
Escrow

Transaction
Claim

22

TumbleBit: Phases and Privacy

I 1. Escrow Phase: All payment channels setup. I

I 2. Payments Phase (~1 month): Alices make many payments to Bobs. I

I 3. Cashout Phase: Bobs and Alices close their payment channels. I

Bobs don't tell Tumbler when they learn o’s...
...thus, Tumbler only see’s Alice to Tumbler payments.
This prevents Tumbler from performing a timing attack..

Tumbler learns two sets of things:
1. that an Alice paid an unknown party at time t,
2. during the payment phase the total # of payments each Bob received..

Puzzle-Promise-Protocol

At the end of this protocol: Bob should be convinced that for a (z, c):

1. The ciphertext c decrypts to O under a key € i.e Dec(€,c) = O

2. AND the key € is the solution to the RSA-puzzle z i.e z = € mod N
The protocol should never: allow Bob to learn a valid o (without paying Tumbler).

| |
- Why prevlj 1. Bob creates and randomly permutes:
T-PK, t o allows H m - valid transactions (reals) @ ®» =
T-SK. '- v Thus, Alicd n - invalid transactions (fakes) © © ©

T = b| B = A randomly permuted list of the
umbler real and fake transactions hashes.

|
-
TumbleBit sets (m =42, n = 42):

2. Tumbler signs each B Prob.(Tumbler successfully cheats) = 278
For all Biin B: zi = ei™rmog N, OT=3Tg(

, BIJ, CI' = CTIC(ET,0T) |

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(25,¢c5),(z6,c6)

3. Bob reveals which
4. Tumbler B = {R,F,F,R,F,R} ‘ . ‘
confirms fakes of the B’s are fake.
are really fakes. €2,€3,e5
Reveals fake €i’s.

6. Bob and Tumbler run “the quotient protocol” ensuring that:

if Bob learns €1, Bob can use that knowledge to learn €4,€6.

5. Bob checks that
Tumbler computed
fakes honestly.

If Tumbler computes any (€i,oi) of the reals correctly then Bob learns a o/gets paid,
Thus, to cheat Bob, Tumbler must all corrupt all the reals and none of the fakes.

Prob(Tumbler successfully cheats) = 1/(m+n choose m)

Hey Alice, I'll sell a solution to
an RSA puzzle of your choice

for 1 Bitcoin
Transaction

Tumbler

Hey Bob, if you find the
solution € to this RSA puzzle z
you learn o and 1 Bitcoin.

Payment
Solver Protocol

Transaction offer
H(X) = Y for @

<+ X

Transaction fulfill
X for @)

Decrypt(X, q)

Transaction
Claim @

" Payment
z = RSA-Dec(SK, €) . Promise Protocol
¢ = Enc(€,0) ' z, C >
________ (') Blind(z)
e
|
|
:- Fair exchange:
| for €* :
: I-I Learn € get
|
|
e* | Unblind(e*)
|
€

v

Decrypt(€, c)

TumbleBit: Protocol Overview

Transaction " Transaction Bob
@ Escrowl Tumbler @ Escrow?

TumbleBit Protocol

Transaction Transaction
B Escrowl @ Escrow2

Transaction Transaction
Claim1 Claim2

I Alice signs Claim1

paying 1 Bitcoin from Alice to Bob via the Payment Hub.

Payment Hub and Bob could sign and post both claim transactions, ‘

...But what if the hub is malicious,

[Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented. 1

[Hash locks provide this property. } 27

{ Puzzle-Solver-Protocol: \ |I Puzzle-Promise-Protocol:

Tumbler convinces Alice the lﬁ @éﬂ gob that the solution to
| where Hash(X) =Y will aIIowmi& tc"f the Tlurh %iﬁé]ﬁgéfd lue € which allows him learn
! and cheats Alll‘erandtanb? claim 1 Bitcoin.

———/

z=€*mod N

¢ = Enc(€,0)
Tumbler *
(z, c)
Hash Condition: N = Sig Condition:'
X such that 2+ | o s_uch that o is a
Hash(X) =Y. 1] valid signature.
I I
| |
I I
| | Fair exchange 1:
| | B: Gives O
I I T: Gives 1 bitcoin
| |
Fair exchange 2: e* | 5 I
A: Gives 1 bitcoin :
T: Gives 1 e* | |
| Fulfill @ for O |

(\ 28
T T e B T D T e [I S |

Alice pays Bob with RSA Puzzles

Hey Bob, if you find the
solution € to this RSA puzzle z
you get 1 Bitcoin.

Hey Alice, I'll sell a solution to
an RSA puzzle of your choice
for 1 Bitcoin

Transaction
Escrow

Transaction
Claim1

L=

Tumbler can encrypt 0 under an RSA-puzzle

z=€"modN
¢ = Enc(€,0) (c,z2) ——

If Bob learns the solution € to z
Bob can decrypt ¢ to 0 and get 1 BTC. I +1 BTC I

Alice pays Bob with RSA Puzzles

Hey Bob, if you find the
solution € to this RSA puzzle z
you get 1 Bitcoin.

Hey Alice, I'll sell a solution to
an RSA puzzle of your choice
for 1 Bitcoin

Transaction
Escrow

Transaction
Claim1

L=

Tumbler can encrypt 0 under an RSA-puzzle

z=€"modN
¢ = Enc(€,0) (c,z2) ——

If Bob learns the solution € to z
Bob can decrypt ¢ to 0 and get 1 BTC. I +1 BTC I

Payment Hub: Privacy

TumbleBit improves payment hubs so that
for each payment the payer can not be linked to the payees.

31

Payment Hub

A payment hub: routes payment channels

Bob1

Transaction Transaction
Escrow Escrow BObz
Bob3

® .

Introduction

=

r 4‘

33

Outline

> ® Payment hubs

o Bitcoin transactions/payment channels
o What are Bitcoin payment hubs?
o Scalability benefits of payment hubs
o Are payment hubs private?
e TumbleBit as a Payment Hub
o RSA-blind puzzles
o TumbleBit as an unlinkable payment hub
o Ensuring fair-exchange (TumbleBit can’t steal)
© Puzzle-Promise-Protocol

Motivation

Technical challenges facing Bitcoin: Privacy, Scalability

Privacy:
® Bitcoin is not anonymous
® Payment history is saved to the blockchain i.e. an eternal public record

Scaling Transaction velocity:
® Transactions are confirmed on the blockchain (avg wait time ~10 mins)
® No confirmation = double spending possible

Scaling Transaction volume:
® Bitcoin: 7 transactions/sec max throughput[1]
e Visa (average): 2000 transactions/sec[1]
e Visa (peak): 56,000 transactions/sec[1]
® Limiting factor is space in Bitcoin’s blockchain

TumbleBit is designed to address these challenges by providing
privacy and scalability without introducing trust.

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

Bitcoin Transactions

1. Alice has 1 BTC
in transaction A.

2. To setup a payment of 1 BTC to Bob, Alice creates a transaction B
moving her bitcoin from transaction A to transaction B.

1 BTC richer!

Transaction: A Transaction: B from(A)
Palease bitcoins to transaction: Release bitcoins to transaction:
If signed by Alice If Signed by Bob

Alice-PK,
Alice-SK

4@ O = Sig(Alice-SK, B)

Transaction conditions (“release bitcoins to transaction if”) are programmable:
® via a very limited non-turing complete language called Script,
e can verify multiple signatures and perform a few other operations.

| will talk more about it later.

)

Payment in Bitcoin occurs by transferring bitcoins in one transaction to a new transaction...
...thus, ownership is merely holding a secret which can authorize such transfers.

@

Spent transactions Unspent transactions

Unidirectional Payment Channels

1. Alice opens a payment channel

I 2. Escrow transaction confirmed on the blockchain. I
by placing 4 BTC in an escrow transaction.

Transaction: Claim1
3 Bitcoins to Alice, 1 Bitcoin to Bob

Sig(Alice-SK, Claim1)

Transaction: Escrow
Release bitcoins to transaction:
If signed by Alice & Bob

Alice-PK, or
Alice-SK If signed by Alice & 1 month has passed

Transaction: Claim2
2 Bitcoins to Alice, 2 Bitcoin to Bob

3. Alice can pay Bob Sig(Alice-SK, Claim2)

multiple times by signing
Claim transactions.

Bob has 3 BTC
in the channel.

Transaction: Claim3

1BTC 1 Bitcoins to Alice, 3 Bitcoin to Bob 3BTC
to Alice Sig(Alice-SK, Claim3) to Bob
03 O Sic(Bob-SK, Claim3) (@

4. Bob closes the channel
by signing Claim3 and posting
the transaction to the blockchain.

Transaction: Claim4
0 Bitcoins to Alice, 4 Bitcoin to Bob

4 Advantages of Payment channels
Scales Tx volume: Two transaction on the blockchain allow Alice to pay Bob many times.
Scales Tx velocity: Risk of Double spending ~=0 so payments happen in milliseconds.
No trust required: Neither Alice nor Bob can cheat each other.

_ If Bob walks away Alice gets her money back after 1 month.

Unidirectional Payment Channels

Disadvantages of Payment channels:
1. To pay many different Bobs, requires many different channels.
2. Each channel setup is expensive in time (~¥10 minutes)
3. ...and money (i.e. BTC sitting in escrows that can’t be used).

A
O

~
@)
& -

[A Payment Hub solves these disadvantages. }

38

Payment Hub: Details

But what if the payment hub is malicious
and cheats Alice and Bob?

| Alice wants to pays Bob via the payment hub. |

@

(. w > Payment
e

Transaction It takes Alice’s bitcoin
4@)
but doesn’t pay Bob.
“r7 (saction
@

1. Alice signs a transaction paying
1 BTC to the payment hub.

2. Payment hub signs a transaction paying
1 BTC to Bob.

Bitcoin Transaction Contracts

Goal: Fair Exchange/Atomic swaps:

Alice
Transaction Offer: X for @ .

“Alice pays'@ to a spending

transaction has a value X
satisfying condition C.

Transaction Fulfill: X for @ .

“Hereis X .”

fBitcoin can only check two cryptographic conditions:
1. Hash(X) =Y,
2. Verify ECDSA Signature on a transaction.

- J
NV

Payment Hub: Fair Exchange

Payment
Hub
~ Hash Condition:
Hash Condition: I Transaction X such that
X such that | Offer H(X)=Y Hash(X) =Y.
Hash(X) = Y. Y
| |
Transaction I I
Offer H(X)=Y I |
for @ I |<\—
I I Fair exchange 1:
I I H: Gives X
/ I I B: Gets 1 bitcoin
| |
Fair exchange 2: X | X T
A: Gives 1 bitcoin
H: Get X | Transaction | I
I Fulfill@ for X I
41
| ® |

Fair exchange prevents the Payment Hub from stealing.

Payment Hub: Privacy

While payment hubs are convenient, they do not offer any
privacy against the payment hub.
The payment hub can trivially link the payer to the payee via the
H(X)=Y used to ensure atomicity.

— \

Payment N«

TumbleBit improves payment hubs so that
for each payment the payer can not be linked to the payees.

42

Outline

e Payment hubs
o Bitcoin transactions/payment channels
o What are Bitcoin payment hubs?
o Scalability benefits of payment hubs
o Are payment hubs private?
:> e TumbleBit as a Payment Hub
o RSA-blind puzzles
o TumbleBit as an unlinkable payment hub
o Ensuring fair-exchange (TumbleBit can’t steal)
© Puzzle-Promise-Protocol

RSA Puzzles

® An RSA Puzzle is just an RSA encryption of some value €:
z = encRSA(€, pk) = € mod N

® Only the party that knows sk can solve RSA puzzles:
€ = decRSA(z, sk) = z* mod N = (€P*)* mod N

RSA blinding can be used to blind RSA puzzles

1. Tumbler issues two puzzles.

@
[] Z 4'

3. Tumbler solves _ : *
the blinded puzzle c* €, = Unblind(e*)

= —
i Z, —> @ 2. Bob2 blinds his puzzle
. ' and requests a solution.
Tumbler 4_ Z* - Bllnd(zz) — @
>

ar_md generate_s a) 4. Bob2 finds the solution
blinded solution €*. to z, by unblinding €*.

Tumbler can not link the blinded RSA puzzle it solves
to any of the RSA puzzles it issues.

Unlinkable Payments

We can use RSA puzzles to hide the link between payers and payees.

z* = Blind(z)
Z
— —_—
LA z
—P>
}/ \ Z

All dominations are the same.

[...but how do we ensure that the tumbler does not cheat. } 15

Puzzle-Promise-Protocol

Many payments
are made here.

Payments
received are
reflected here.

Phase 2: Phase 1:

Phase 3:

Payment Escrow

Cash-out

Alice Tumbler __________ . Bob
 Puzzle-Promise g’
Y Protocol /
3 BTC 3BIC m— i
_\v \v L €2 |,
Escrow Transaction Escrow Transaction
I M Z=Blind(2)
Z—d—5./” "RSA-Puzzle-Solver “y
>\ Powcl 4> 1 BTC from A to B
c< I
| 7\

Unblind(€)= —p€

ro: Dece(C) 1

Cash-out Transaction

Cash-out Transaction

Payment unlinkability:

1. In payment: Tumbler can see that Alice paid (but no who she paid)
2. In cashout: Tumbler learns aggregate funds received by Bob.

2 BTC

1 BTC

2BTC

46

Many payments
are made here.

Payments
received are
reflected here.

Phase 2: Phase 1:

Phase 3:

Payment Escrow

Cash-out

Unlinkabi

lity

Alice Tumbler __________ . Bob
 Puzzle-Promise g’
Y Protocol /
3 BTC 3BIC m— i
_\v \v L €2 |,
Escrow Transaction Escrow Transaction
I M Z=Blind(2)
Z—d—5./” "RSA-Puzzle-Solver “y
>\ Powcl 4> 1 BTC from A to B
c< I
| 7\

Unblind(€)=€ —p €

ro: Dece(C) |

Cash-out Transaction

Cash-out Transaction

2 BTC

Payment unlinkability:

1. In payment: Tumbler can see that Alice paid (but no who she paid)
2. In cashout: Tumbler learns aggregate funds received by Bob.

1 BTC

2BTC

S

47

Bitcoin Transaction Contracts

Goal: Fair Exchange/Atomic swaps:

Alice
Transaction Offer: X for @ .

AL

to a spending

-~—i® - S
trarsscuion na> a vaiul ¥

satisfying condition C.

AddrA
Transaction Fulfill: X for & .

“Hereis X .”

S

Bitcoin transaction scripts are very limited.
We can only check two types of cryptographic conditions C:

1. Hash(X) =Y,
2. ECDSA_ CheckSignature(Tx, PUBLIC_KEY) = TRUE y

\

TumbleBit: Paying with RSA-Puzzles

But what if the Tumbler is malicious
and cheats Alice and Bob?

To prevent cheating we develop protocols _
that ensure blockchain mediated fair exchange. linds
" _ 4
Alice buys & g
a solution. M—
E*
Tumbler could take Alice’s . e ——— |Bob unblinds
money and fail to provide a ﬁ B .
solution?

Tumbler could refuse to
pay for a solution?

Payment Hubs: Preventing Theft

I 1. Alice2 asks Hub to setup a payment. I —>
h

S

@,

3. Alice2 performs a fair-exchange with Hub
s.t. Hub gets 1 BTC via Alice2—Hub if and only if Alice2 learns X.

Payment 2. Hub sends Bob3 1 BTC.
However payment isn’t valid
Hub without a value X s.t. H(X)=Y

4. Fair-exchange completes,
Alice2 learns X, Hub gets 1 BTC.

5. Alice2 tells Bob3 X, ‘

[We want to ensure that the transaction Alice2—Hub is atomic with Hub—Bob3. }

Background: Bitcoin Transactions

1. Alice has 1 BTC
in transaction A.

2. To setup a payment to Bob of 1 BTC Alice creates a transaction B
moving her bitcoin from transaction A to transaction B.

1 BTC richer!

Transaction: A
Pzlease funds to transaction:
If signed by Alice

Transaction: B from(A)
Release funds to transaction:
If Signed by Bob

4@ O = Sig(Alice-SK, B)

Alice-PK,
Alice-SK

I 3. Alice then signs transaction B to fulfill A’'s condition... I

I ...thus transferring that bitcoin from transaction A to transaction B. I

Payment in Bitcoin occurs by transferring bitcoins in one transaction to a new transaction...
...thus, ownership is merely holding a secret key which can authorize such transfers.

@

Spent transactions Unspent transactions

Background: Payment Hub

1. Alice opens a payment channel

I 2. Escrow transaction confirmed on the blockchain.
by placing 4 BTC in an escrow transaction.

Transaction: Claiml from(Escrow)
3 Bitcoins to Alice, 1 Bitcoin to Bob

Sig(Alice-SK, Claim1)

Transaction: Escrow
Release funds to transaction:
If signed by A & B

Alice-PK, or
Alice-SK If sighed by A & 4 days have passed.

Transaction: Claim2 from(Escrow)
2 Bitcoins to Alice, 2 Bitcoin to Bob

2. Alice can pay Bob Sig(Alice-SK, Claim2)

multiple times by signing
Claim transactions.

Bob has 3 BTC
in the channel.

Transaction: Claim3 from(Escrow)
1BTC 1 Bitcoins to Alice, 3 Bitcoin to Bob 3BTC

to Alice Sig(Alice-SK, Claim3) to Bob

O Sig(Bob-SK, Claim3) (@

3. Bob closes the channel
by signing Claim3 and posting
the transaction to the blockchain.

Transaction: Claim4 from(Escrow)
0 Bitcoins to Alice, 4 Bitcoin to Bob

Alice was able to make N instant transactions to Bob.

TumbleBit: The Basic Idea

@

~
A - ’

Tumbler
8

[Intuition: Tumbler gives out locked bitcoins and sells keys.]

TumbleBit: Overview

IAIice1 pays the tumbler 1 Bitcoin for the key to Bob2'’s lock. I

/‘\ Tumbler

‘i I Alice3 pays Bob3 the same way. I

‘\l Bob1 and Bob3 unlock their bitcoins and cash out. I

[Intuition: Tumbler gives out locked bitcoins and sells keys.]

Related Work

New Cryptocurrencies
Not compatible with bitcoin

o
@erocoin Project ==

- CoinJoin:

o

/\Iulnerable to DoS & Sybil Attacks

n

imited Anonymity

CoinShuffle

Bitcoin-Compatible

Schemes
(aka “Mixing Services”)

—Y
J

Cryp!

i)
XL O
\ True Anonym tocurrency

/ Vulnerable to bitcoin theft \

Blindcoin:

Intermediary
breaks

anonymit
_ e

.)
Mixing takes
hours
. Xim

‘ TumbleBit

Phase 2: Phase 1:

Phase 3:

Payment Escrow

Cash-out

T N e e, e e,

RSA-Puzzle-Solver Protocol

Alice

3 BIC

=

Escrow Transaction

Tumbler

Escrow Transaction

Z=Blind(Z) —

1 BTC from Ato B

Unblind(€)=€ —p-€

rG: Dece(C) ——I

Cash-out Transaction

Cash-out Transaction

2 BTC

I’'m only going to walk through the RSA-Puzzle-Solver
Protocol, but it is similar to the Puzzle-Promise-Protocol.

Payment Hubs: Preventing Theft

The transaction Hub—Bob3
is only valid if Bob knows X

The transaction Hub—Bob3

Payment is only valid if Bob knows X s.t. H(X) =Y

Hub

{ We want to ensure that the transaction Alice2—Hub is atomic with Hub—Bob3. }

Blinded puzzle

Alice mixes the puzzle

b 3 =
Z y T | Forie [m]. pick r; € 25,

Puzzle-Solver-Protocol

Alice A
Input: Puzzle y

Tumbler T
Secret input: sk

1. Prepare Real Puzzles R

d; <y - [r'[-J'IP“ mod N

2. Prepare Fake Values F
For i € [n]. pick p; € 2%
&; +— (p;)P* mod N

3. Mix Sets.
Randomly permute 4. Evaluation
A d 5. A1l Eori = 1 i L 1

Tumbler solves all the

she want solved wi
fake puzzles for
she know the s

Alice reveals the
puzzles and ask
Tumbler to oper
commitments.

Alice checks the
fake puzzle
commitments of

correct values. L

If she learns a set of hash preimages:

Hash(k,) = h, ... Hash(k)=h_

Then she also learns the solution to RSA Puzzle vy:
y** mod n

rypts the
commits

The Tumbler uses this protocol to convince Alice

ks that
Il the

e fake
hen
itments.

M OOCT COTMOITO IS TOTEITE Tl TSI T3
signed by T and has preimages of k; ¥j € R".

Alice learns the

9. Check 5; unblind to y vj € R

For all j € R
Verify 3; = u - [r'_fjlf’"" mod N
If not, abort.

10). Post transaction T

solution to y and
sends it to Bob.

11. Obtain Purzle Solution

For j € R:
Leam k; from Tiwe
Decrypt ¢; to 5; = HPB(k;) @ ¢y
If 5; i1s s.L l[.w_,,'l”“ = F; mod N,
Obtain solution s;/r; mod N
which is ™.

Teoive Contains k;Vj € R

Tumbler ensures that
all the real puzzles
have the same
solution.

58

Security of Puzzle-Solver-Protocol

Alice A4 Tuml
Input: Puzzle g Secr

. Prepare Real Puzzles
For 1 € [m], pick r; € Z,
d; +— y - (r)P* mod N

M = size of real set —

N = size of fake set —» gwpare Fake Values 7

The Tumb/ Prob of the Tumbler cheating: \ LE

For 1

Alice is 1/(M+N choose M) CE
AND

1

or c
SRR the probability that the Tumbler correctly guesses &

T the real set of puzzles. EN
WO paran For.

Mand N If ye
M = 15, N = 285 IS

If the Tum Prob of cheating = 2-8°
... Alice %.\ L /

TIATSaC I T presle

[

Touszie offers | bitcoin within timewindow fw
under condition “the fulfilling transaction is

If the Tumbler corrupts >M solutions: R e B GG el

... Alice will always detect cheating. T B

If no

10. F

The Tumbler must corrupt exactly M solutions L1, Obtsin Puzzle Solution L
... and must only corrupt the real set. P i e i

Decrypt c; to 5; = HPE(k;) @ c;
If .w_,-_i:-; 5.k {_.v_,,'l""" = [3; |L1c::l_."-'.
Obtain solution s;/r; mod N
which is y™*.

Puzzle-Promise-Protocol

Bob B

Tumbler T Secret input: sk

2. Prepare @ Real Unsigned T.-nsm:'r,ﬁ‘}-

TaaiT, 83
—_—

Foriel..... :
Choose random pad p; « {0,]}:"
Set T‘.mcg-_ﬁ]' = CashOutTFormat| | oy
Rk = F'{ Touany)-

3. Prepare Fake Set.

Farie 1, .., n:
Choose random pad ry « {0,134
fiy = H'(FakeFormat||r).

4. Mix Sets.
Randomly permute
{Ft, - Fly Bty ... Bt}

o obtain {3, .. Fugq)

Let R be the indices of the hi;

Let F be the indices of the f#,
S . e,
—_—

Choose salt € {0,1}*
Compute: hy = H (salt]|R)
hg = H{salt]|F)
b by
e}

(en 21} Bt Eusg)
il eb P o g, L

6. Identify Fake Set APy
S v WiEF
el Y
walt
—
8. Check Fake Set.
For all s € F ﬂ
- Validate that ¢; < N
- Validate RSA puzzle z; = ()™ mod N
- Vahdate promise e;:
(a) Decrypt oy = HP8(e;) @ oy
(b} Venfy oy, ie,
ECDSA—V&r{Pﬁ'.‘:,-?",H‘U’f,]_ o) =1
Abort if any check fails
LR s
¥t -

10. Quotient Test
For B = {41, Jn} check equalities:
Zgy = 2Zy, - (g2) mod N

Zj, =z, - (qu)™ mod N
Abort if any check fals

12. Begin Payment Phase.
Setz=z, Sendz=z ()" 1o Payer A4

1. Set up Tta'r\{‘]’.r_ij

Sign but do not post transaction 'Inar;‘.l'.m
umelocked for twy offering one bitcoin
under the condition: “the fulfilling transaction
must be signed under key .F‘KLF"" and

under key PR g™

5. Evaluation.
Fawi=1,..., [T
ECDSA sign g w get o, = S:ig[:i'h'fl,_“'.:ii:l
Randomly choose ei € Zw.
Create promise o; = H*™(e,) @ o,
Create puzzle z;=fpec,(e;. pk. N)

ie, 7= (&)™ mod N

7. Check Fake Set.
Check hp = H{salt||R) and hp = H{salt||F)
For all ¢ £ F:
verify @ = H'(FakeFormat||r).
Abort if any check fails

9. Prepare Cuotients.
For R={f1....3u}:

o]
3 oy = =tk . |
hftl;lr_(i___..q‘"_‘ =

11. Post transaction T g on blockchain

60

TumbleBit: Roadmap

Phase 1: Code Safety and Testing

Mowve as much code as possible into python for improved memory safety.
Modularize code to allow our core protocol to be used in other settings.
Replace openssl-ECDSA with libsecp25h6k]1.

Phase 2: Server Features

Payment Hub support.

Misbehavior reactive senver and client.
Session Management and parallelization.
TOR integration.

Standardized REST Interface.

Phase 3: Usability and Wallets

Wallet Prototype.

Classic Tumbler Wallet integration.
Payment Hub Wallet integration.
Wallet to wallet demo.

Phase 4: Operational Concerns

Monitoring.

Audit and test at-scale deployment.

Assess, test and mitigate server compromise risks.
Release ops guide.

Phase 5: Alpha Release

User guides and documentation.
Wallet binaries.

Alice
Input: Puzzle y

Tumbler T
Secret input: sk

1. Prepare Real Puzzles R
For i € [m], pick r; € Z},
d; — y- ()% mod N

2. Prepare Fake Values F
Fori e [nf, pick p; € Z;
&; +— (p;)P* mod N

3. Mix Sets.
Randomly permute
{di...dgm,01...8.}

; FieoFmgn
Lo {ﬁl---ﬁm-l-n} —+>
Let R be the indices of the d;
Let F be the indices of the &;
E1 e Crner
[S
{—
5. Identify Fake Set F i d 204

7. Check Fake Set &

For all i € F, SR
Verify that h; = H(k)
Decrypt s; = HFE (k) &«
Verify (5:)7* = (p;) mod N

Abort if any check fails.

8. Post transaction Tz,

Tpuzzte Offers | bitcoin within timewindow fw)
under condition “the fulfilling ransaction is
signed by T and has preimages of k; ¥j € R".

w, T;¥iER
_—

11. Obtain Purzle Solution

For j € R:
Leam k; from Tiwe
Decrypt c; to s; = HY8(k;) & o
If 5; is s.k (5;)7° = 3 mod N,
Obtain solution s;/r; mod N

which is 3™

4. Evaluation
Fori=1..m+n

Evaluate §;: 5; = 57 mod N
Encrypt the result s;:
— Choose random k; € {0, 1}™
- c; = H"E(l;) & s,
Commit to the keys: h; = H(k)

6. Check Fake Set F
For all i € F:
Verify 4; = (p;)"* mod N,
If yes, reveal k; Vi € [F].
Else abort.

9. Check 3; unblind to y ¥j € R

For all j € R
Verify 3; = - {'rjj"" mod N
If not. abort.

10). Post transaction T
Teoive Contains k;Vj € R

62

TumbleBit: Paying with RSA-Puzzles

Fair exchange 1:
A: Gives 1 bitcoin
A: Gets 1 voucher

Transaction
Offer V for @

sn
[o]
Transaction
Fulfil V for @
E)
&)

z= € mod N

¢ = Enc(€,0)
Tumbler
(z, c)
I_HI
c* | offer @for O I
I
: I
: I
: I
: I
: I
: I
I
l V
: I
: I
: I
I

Fair exchange 1:

B: Gives O
B: Gets 1 bitcoin

63

Bitcoin faces three technology challenges:

1. Scaling transaction velocity (speed of payments):
® Bitcoin transaction confirmations is ~10 min,
... occasionally an hour or more.
e No confirmation = no double spending protection.

2. Scaling transaction volume (max # of payments):
e “Bitcoin achieves 7 transactions/sec maximum throughput
...[Visa] processes 2000 transaction/sec on average,
with a peak rate of 56,000 transactions/sec”[1]
® To compete with mainstream payment processors
... Bitcoin needs to support much higher transaction volume.
e Limiting factor here is space in the blockchain.

3. Anonymity and user privacy:
® Bitcoin transactions are saved in the blockchain
... creating an eternal public record of payment history.

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

Paying with RSA-Puzzles

=

2

Tumbler

Transaction 1:
Bob can claim 1 Bitcoin
if he knows a

~

>

&

65

10. Privacy

The traditional banking model achieves a level of privacy by limiting access to information to the
The necessity to announce all transactions publicly
precludes this method, but privacy can still be maintained by breaking the flow of information in
another place: by keeping public keys anonymous. The public can see that someone is sending
an amount to someone else, but without information linking the transaction to anyone. This is
similar to the level of information released by stock exchanges, where the time and size of

parties involved and the trusted third party.

individual trades, the "tape", is made public, but without telling who the parties were.
Satoshi Nakamoto, 2008

Bitcoin offers privacy—as long
as you don't cash out or spend

it

Quantitative Analysis of the Full Bitcoin
Transaction Graph

Dorit Ron and Adi Shamir

A Fistful of Bitcoins: Characterizing Payments Among

Men with No Names

Sarah Meiklejohn
Levchenko

Marjori Pomarole Grant Jordan
Damon McCoy' Geoffrey M. Voelker ~ Stefan Savage

University of California, San Diego George Mason UniversityT

Department of Computer Science and Applied Mathematics,

The Weizmann Institute of Science, Israel
{dorit.ron, adi.shamir}@weizmann.ac.il

or the public ledger that records bits
bitcoins mave from one person to a

alphanumeric addresses.

Evaluating User Privacy in Bitcoin

Elli Androulaki®, Ghassan O. Karame?, Marc Roeschlin’,
Tobias Scherer', and Srdjan Capkun'

Introduction

Privacy:
® Bitcoin is not anonymous
® Payment history saved in
an eternal public record

Transaction velocity:
e Transactions confirmed on the blockchain
® No confirmation = double spending possible
® Avg confirmation time is ~¥10 min

Transaction volume: Max # payments
® Bitcoin: 7 Tx/sec max throughput[1]
e Visa: (avg) 2000 Tx/sec[1]
e Visa: (peak) 56,000 Tx/sec[1]
® Limiting factor is space in the blockchain

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

Introduction

Technical challenges facing Bitcoin:

Privacy:
® Bitcoin is not anonymous
e Payment history saved in
an eternal public record

Transaction velocity:
® Transactions confirmed on the blockchain

® No confirmation = double spending possible
® Avg confirmation time is ~10 min

Transaction volume: Max # payments
e Bitcoin: 7 Tx/sec max throughput[1]
e Visa: (avg) 2000 Tx/sec[1]
e Visa: (peak) 56,000 Tx/sec[1]
® Limiting factor is space in the blockchain

[1]: ‘On Scaling Decentralized Blockchains (A Position Paper)’ Croman, et al.

TumbleBit: scalability and payment
privacy.

1. Scaling transaction velocity (speed of payments):
® TumbleBit as a payment hub can make payments in seconds.

2. Scaling transaction volume (max # of payments):
e Payment hubs allow many payments to one party
to be aggregated into two on-blockchain transactions.
® These payments don’t need to be stored or validated on the
blockchain.

3. Anonymity and payment privacy:
® TumbleBit provides payment privacy via unlinkability.

In this talk | am only going to tell you about how
TumbleBit provides trustless payment privacy.

